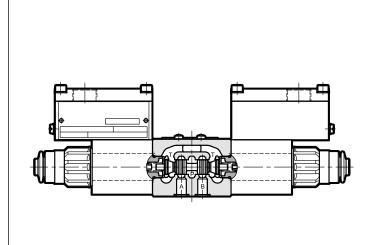


PO Box 38 Strathfieldsaye, VIC, 3551 1800 OIL SOL 1800 645 765

sales@oilsolutions.com.au

"For All Your Hydraulic Needs"

www.oilsolutions.com.au

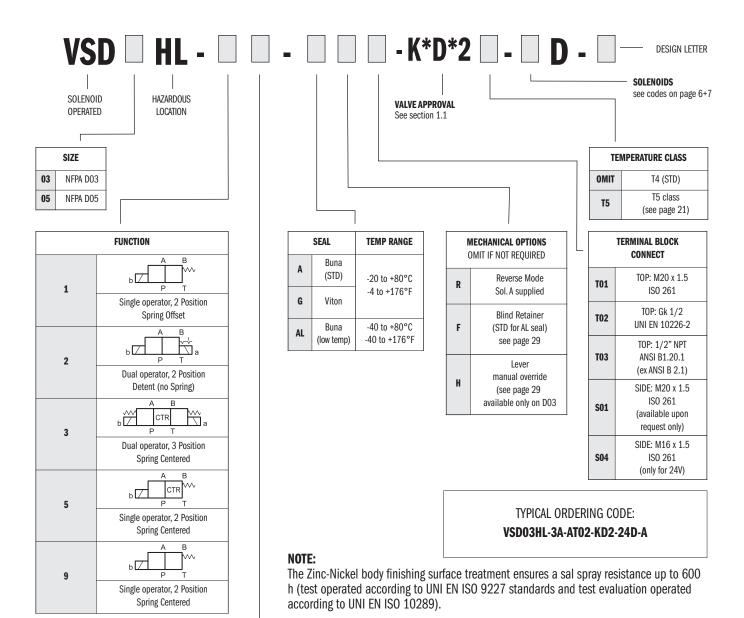


VSD* HL

EXPLOSION-PROOF SOLENOID OPERATED DIRECTIONAL CONTROL VALVES ATEX, IECEx, INMETRO, PESO

VSD03HL D03 (ISO 4401-03) VSD05HL D05 (ISO 4401-05) VSD05*HL D05H (alt. A / alt. B) VSD07HL D07 (ISO 4401-07) VSD08HL D08 (ISO 4410-08) VSD10HL D10 (ISO 4401-10)

OPERATING PRINCIPLE

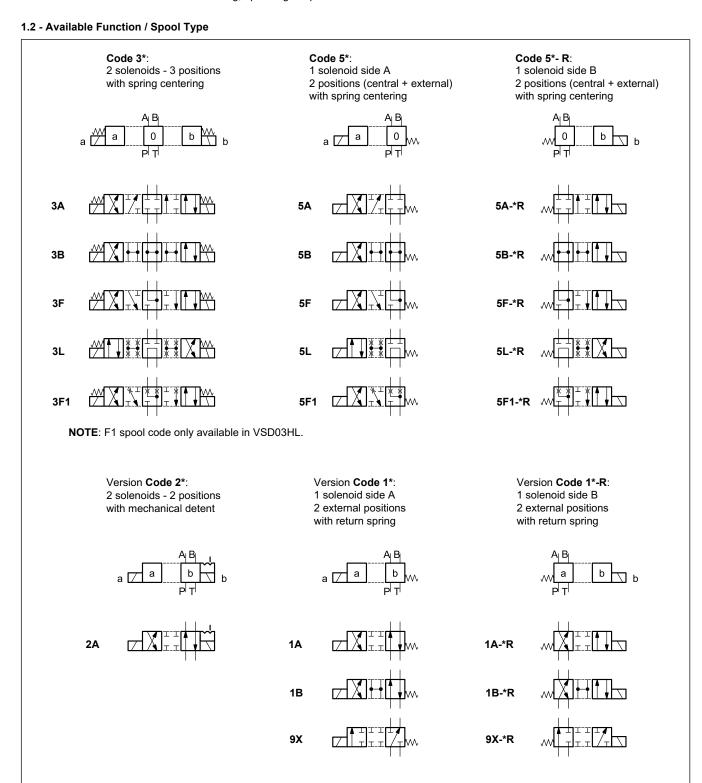


- The direct operated directional valves are available in ISO 4401-03 and ISO 4401-05 size; available pilot operated sizes are: CETOP P05, ISO 4401-05, ISO 4401-07, ISO 4401-08 and ISO 4401-10.
- They are compliant with ATEX, IECEx, INMETRO or PESO requirements and are suitable for use in potentially explosive atmospheres, for surface plants or mines.
- A low temperature version (up to -40 °C) is also available.
- VSD03HL and VSD05HL valves are supplied with a zinc-nickel finishing surface treatment that ensures a salt spray resistance up to 600 h; for pilot operated valves, this treatment is available upon request.
- Details for classification, operating temperatures and electrical characteristics are in the technical data sheet (Form No. 1027865) 'Explosion proof classification'.

TYPICAL PERFORMANCE SPECIFICATIONS

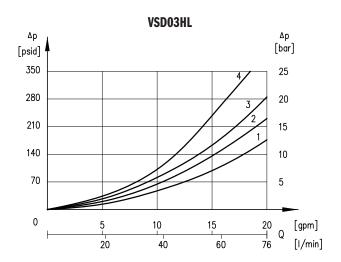
		VSD)3HL	VSD	D5HL		5AHL 5BHL	VSD	07HL	VSD	08HL	VSD	10HL
MAXIMUM	P - A - B Ports	5000 psi	350 bar	4600 psi	320 bar	4600 psi	320 bar	5000 psi	350 bar	5000 psi	350 bar	5000 psi	350 bar
OPERATING PRESSURE	T Port (Ext. Drain)	-	-	-	-	3000 psi	210 bar	3000 psi	210 bar	3000 psi	210 bar	3000 psi	210 bar
FRESSORE	T Port (Int. Drain)	3000 psi	210 bar	3000 psi	210 bar	2000 psi	140 bar	2000 psi	140 bar	2000 psi	140 bar	2000 psi	140 bar
PILOT	Minimum	-	-	-	-	72-145 psi	5-10 bar	72-175 psi	5-12 bar	102-204 psi	7-14 bar	87-175 psi	6-12 bar
PRESSURE	Maximum	-	-	-	-	3000 psi	210 bar	3000 psi	210 bar	3000 psi	210 bar	3000 psi	210 bar
MAX FLOW R	ATE	20 gpm	76 I/min	33 gpm	125 l/min	40 gpm	150 I/min	80 gpm	300 I/min	160 gpm	600 I/min	290 gpm	1100 lpm
MOUNTING SURFACE		NFPA ISO 4401-0			D05 05-04-0-05	l	alt. A/alt. B 05-05-0-05		D07 D7-07-0-05	NFPA ISO 4401-0		NFPA ISO 4401-1	
MAX WEIGHT	ſ	6.2 lbs	2.8 kg	8.4 lbs	3.8 kg	17.2 lbs	7.8 kg	21.2 lbs	9.6 kg	36.4 lbs	16.5 kg	116.8 lbs	53 kg

1- IDENTIFICATION CODE - HAZARDOUS LOCATION - DIRECT OPERATED



1.1 - Names of valves per certification

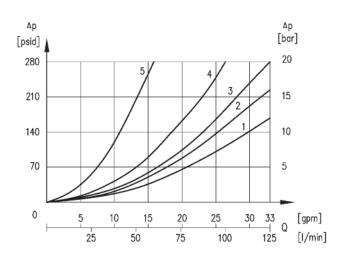
	ATEX		IECEx		INMETRO		PESO	
for gases for dusts	KD2	II 2GD	KXD2	IECEx Gb IECEx Db	KBD2	INMETRO Gb INMETRO Db	KPD2	PESO Gb not applicable for dust
for mines	KDM2	I M2	KXDM2	IECEx Mb	KBDM2	INMETRO Mb	not applicable for mines	


NOTE: Refer to the technical data for marking, operating temperatures and available versions.

2 - CHARACTERISTIC CURVES AND PERFORMANCES OF DIRECT OPERATED SOLENOID VALVES

2.1 - Pressure drops Δp-Q

(values obtained with viscosity 36 cSt at 50 $^{\circ}\text{C})$


ENERGIZED VALVE

	FLOW DIRECTION					
SPOOL	P→A	P→B	A→T	В→Т		
	Cl	JRVES (ON GRAF	PH		
3A, 5A	2	2	3	3		
3B, 5B	1	1	3	3		
3F, 5F	3	3	1	1		
3L, 5L	4	4	4	4		
3F1, 5F1	2	2	3	3		
1A	3	3	3	3		
1B	2	2	2	2		
9X	3	3	-	-		
2A	2	2	2	2		

DE-ENERGIZED VALVE

	FLOW DIRECTION					
SPOOL	P→A	Р→В	A→T	В→Т	P→T	
	CURVES ON GRAPH					
3B, 5B	-	-	-	-	2	
3F, 5F	-	-	3	3	-	
3L, 5L	-	-	-	-	3	

VSD05HL

ENERGIZED VALVE

	FLOW DIRECTIONS					
SPOOL	P→A	P→B	A→T	В→Т		
	CU	RVES O	N GRAF	HS		
3A	1	1	2	2		
3B	1	1	1	1		
3F	1	1	1	1		
3L	4	4	4	4		
2A	2	2	2	2		
1A	2	2	3	3		
1B	2	2	1	1		
9X	3	3	-	-		

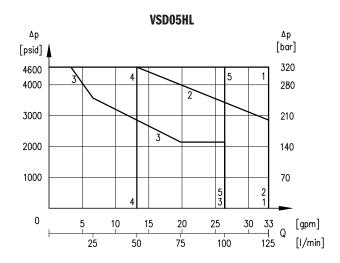
DE-ENERGIZED VALVE

	FLOW DIRECTIONS					
SPOOL	A→T	B→T	P→T			
	CURV	CURVES ON GRAPHS				
3B	-	-	1			
3F	5	5	-			
3L	-	-	1			

2.2 - Performance limits

The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage, with mineral oil with viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The operating limits can be considerably reduced if a 4-way valve is used as 3-way valve with port A or B plugged or without flow.


DC SOLENOID VALVE

SPOOL	CUF	RVE
SPOOL	P→A	Р→В
3A, 5A	1	1
3B, 5B	2	2
3F, 5F	3	3
3L, 5L	2	2
3F1, 5F1	1	1
1A	1	1
1B	4	4
9X	4	4
2A	1	1

AC SOLENOID VALVE

SPOOL	CUF	RVE	
SPOOL	P→A	Р→В	
3A, 5A	1	1	
3B, 5B	2	2	
3F 5F	3	3	
3L, 5L	4	4	
3F1, 5F1	1	1	
1A	1	1	
1B	\times	X	
9X	4	4	
2A	1	1	

* not available

SPOOL	CURVE
3A, 3B, 2A	1
1B	2
3F	3
3L	4
1A, 9X	5

2.3 - Switching times

The indicated values are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

	vs	D03HL	VSD05HL		
TIMES [ms]	ENERGIZING	DE-ENERGIZING	ENERGIZING	DE-ENERGIZING	
DC	60	40	70 ÷ 100	15 ÷ 20	
AC	60	140	70 ÷ 100	140	

3 - ELECTRICAL CHARACTERISTICS

(values ± 5%)

Coil type	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt.	Power consumpt. [W]
D12	12	7,2	1,7	20
D24	24	28,7	0,83	20
D48	48	115	0,42	20
D110	110	549	0,2	22

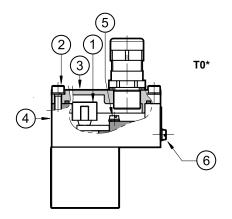
Coil type (NOTE)	Nominal voltage [V]	Freq. [Hz]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt. [VA]
R120	110V-50Hz 120V-60Hz		489,6	0,19 0,21	21 25
R240	230V-50Hz 240V-60Hz	50/60	2067,7	0,098	22,5
	2407-0002			0,1	24

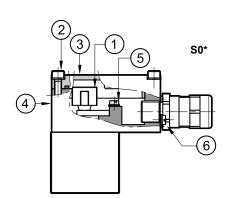
VOLTAGE SUPPLY FLUCTUATION (ripple included)	± 10% Vnom
MAX SWITCH ON FREQUENCY VSD03HL, VSD05HL VSD05*HL VSD07HL VSD08HL VSD10HL	8.000 ins/hr 6.000 ins/hr 6.000 ins/hr 4.000 ins/hr 3.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC)	According to 2014/30/EU
CLASS OF PROTECTION: Atmospheric agents Coil insulation (VDE 0580)	IP66 / IP68 class H

NOTE: type R* coils are for alternating current supply for both 50 or 60 Hz. For R* coils the resistance can not be measured in the usual way because of the presence of diodes bridge inside the coil.

3.1 - Wiring

In order to realise the electrical connection of the coil, it is necessary to access the terminal block (1) unscrewing the 4 screws (2) that fasten the cover (3) with the box (4) that contains the terminal block.

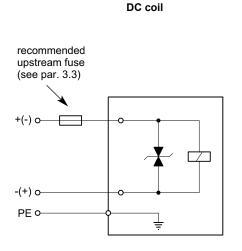

The electrical connection is polarity-independent.

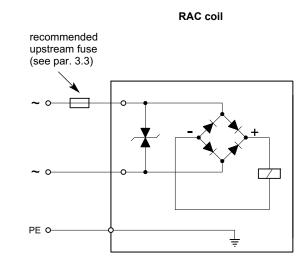

By doing electrical connection it is important to connect also the grounding point (5) in the terminal block box (M4 screws), through suitable conductors with the general grounding line of the system.

On the external body of the coil there is a grounding point (6) (M4 screw) that allow to ensure equipotentiality between the valve and the general grounding line of the system; connecting this point the regulation of the EN 13463-1 standard, that impose to verify the equipotentiality of the elements included in a potentially explosive environment (the maximum resistance between the elements must be 100 Ω), is guaranteed.

At the end of the electrical wiring, it is necessary to reassemble the cover (3) on the box (4), checking the correct positioning of the seal located in the cover seat and fastening the 4 M5 screws with a torque of 4.9 ÷ 6 Nm.

Electrical wiring must be done following in compliance with standards about protection against explosion hazards.


Characteristics of the cables connectable for wiring are indicated in the table below:


Function	Cable section
Operating voltage cables connection	max 2.5 mm²
Connection for internal grounding point	max 2.5 mm²
Connection for external equipotential grounding point	max 6 mm²

Cables for wiring must be non-armoured cables, with external covering sheath and must be suitable for use in environments with temperatures from - 20 °C to +110 °C (for valves either with A or G seals) or from - 40 °C to +110 °C (for valves with AL seals).

Cable glands (which must be ordered separately, see point 19) allow to use cables with external diameter between 8 and 10 mm.

3.2 - Electrical diagrams

3.3 - Overcurrent fuse and switch-off voltage peak

Upstream of each valve, an appropriate fuse (max 3 x In according to IEC 60127) or a protective motor switch with short-circuit and thermal instantaneous tripping, as short-circuit protection, must be connected. The cut-off power of the fuse must correspond or exceed the short circuit current of the supply source. The fuse or the protective motor must be placed outside the dangerous area or they must be protected with an explosion-proof covering.

In order to safeguard the electronic device to which the valve is connected, there is a protection circuit in the coil, that reduces voltage peaks, which can occur when inductances are switched off.

The table shows the type of fuse recommended according to the nominal voltage of the valve and to the value of the voltage peaks reduction.

Coil type	Nominal voltage [V]	Rated current [A]	Recommended pre-fuse characteristics medium time-lag according to DIN 41571 [A]	Maximum voltage value upon switch off [V]	Suppressor circuit
D12	12	1,7	2,5	- 49	
D24	24	0,83	1,25	- 49	
D48	48	0,42	0,6	- 81	Transient voltage
D110	110	0,2	0,3	- 309	suppressor bidirectional
R120	120	0,21	0,3	- 3	
R240	240	0,1	0,15	- 3	

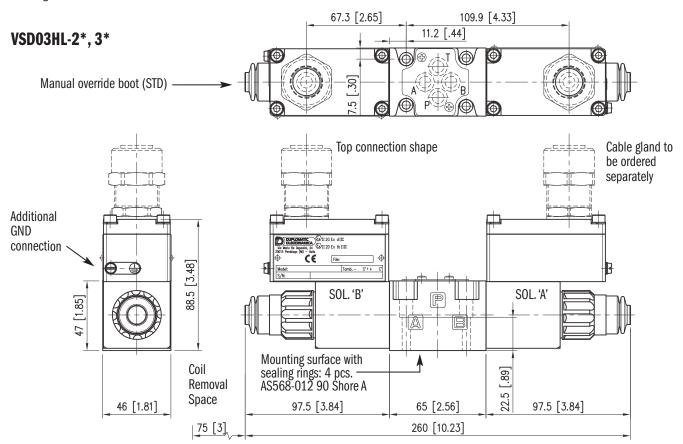
Dimensions in mm [IN]

4. OVERALL AND MOUNTING DIMENSIONS

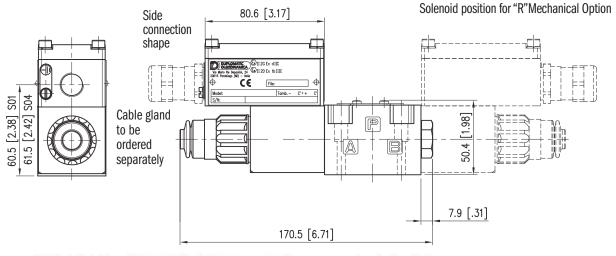
THREAD OF MOUNTING HOLE

10-24 UNC-2B x 0.50

FASTENING


4 bolts - 10-24 UNC-3A X 1 1/4

TIGHTENING TORQUE


4-5 lbf-ft (5.5-6.8 Nm)

SEALING RINGS

4 O-rings AS568-012 90 Shore A

VSD03HL-1*, 5*, 9*

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

sales@oilsolutions.com.au

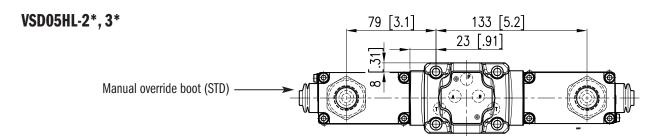
4.1 OVERALL AND MOUNTING DIMENSIONS

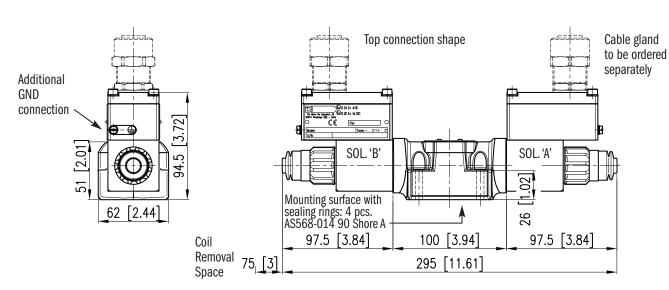
THREAD OF MOUNTING HOLE

1/4-20 UNC-2B x 0.60

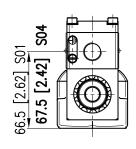
FASTENING

4 bolts $\,$ - 1/4-20 UNC 2B X 1 1/2 $\,$

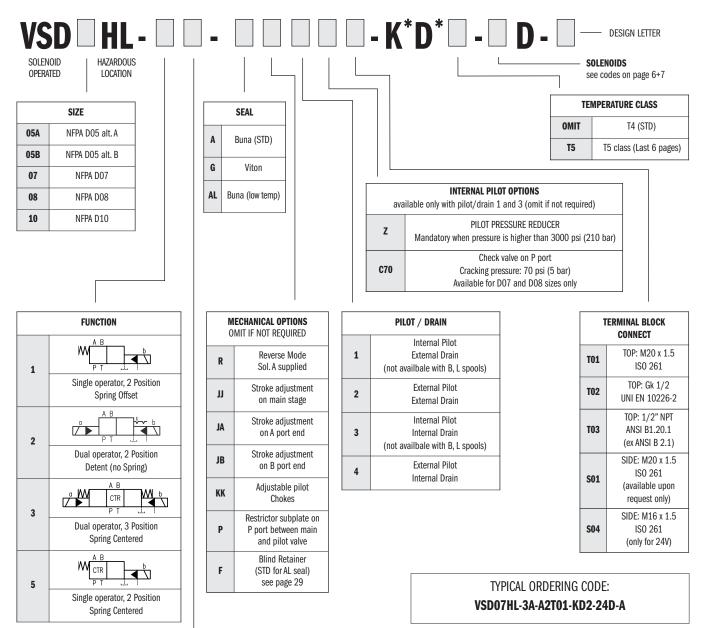

TIGHTENING TORQUE


6 lbf-ft (8 Nm)

SEALING RINGS

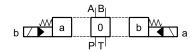

5 O-rings AS568-014 90 Shore A

Dimensions in mm [IN]

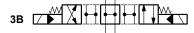

VSD05HL-1*, 5*, 9*

5. IDENTIFICATION CODE - HAZARDOUS LOCATION - PILOT OPERATED

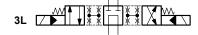
NOTE:

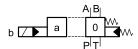

The valve is supplied with STD surface treatment of phospathing black for the main body and Zinc-Nickel for the D03 pilot valve.

	SPOOLS									
NAME	SYMBOL	FUNCTION	CENTER POSITION	CROSSOVER	FUNCTION MATCHING					
A			All ports blocked	P →B or P →A T blocked	1, 2, 3, 5					
В			All ports open	All ports open	1, 3, 5					
F			P blocked and A \rightarrow T or B \rightarrow T	P blocked and A →T or B →T	3,5					
L			P →T A and B blocked	All ports open, restricted	3,5					



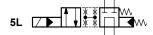
5.1 - Spool types

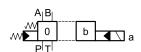

Version 3*: 2 solenoids - 3 positions with spring centering

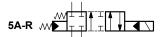


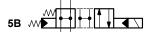
Version 5*:

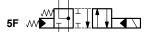
1 solenoid b

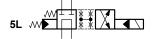

2 positions (central + external) with spring centering

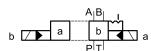


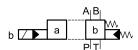



Version 5*-R:


1 solenoid a

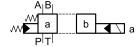

2 positions (central + external) with spring centering





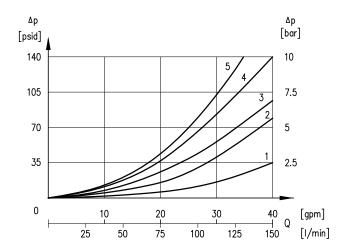
Version Code 2: 2 solenoids - 2 positions with mechanical retention

Version Code 1*: 1 solenoid b 2 external positions with return spring



Version Code 1*-R: 1 solenoid side a

2 external positions with return spring



6 - CHARACTERISTIC CURVES AND PERFORMANCES OF PILOT OPERATED SOLENOID VALVES

6. PRESSURE DROPS Δp-Q - PILOT OPERATED VALVES

(OBTAINED WITH VISCOSITY OF 170 SUS (36 cSt) AT 120°F (50°C)

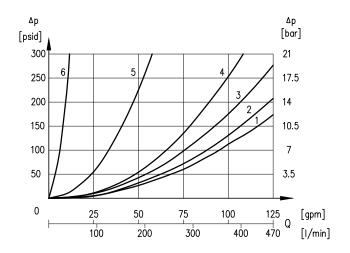
VSD05*HL

	FLOW CURVE NUMBER								
SP00L			CTR						
	P→A	P→B	A→T	В→Т	P→T	A→T B→T			
A, 1A, 2A	4	4	1	1	-	-			
В	3	3	1	2	5	-			
F	4	4	1	1	-	4			
L	5	5	2	3	5	-			
1B	3	3	1	1	-	-			

NOTES:

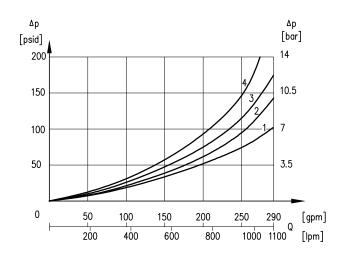
- 1. The values indicated in the graphs are relevant to the standard solenoid valve, with 24 volt DC coils.
- 2. Valve performance was tested in a four way circuit (full loop). Performances may be reduced from that shown when used in a three-way circuit (half circuit), i.e. A or B port plugged.
- 3. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with filtration according to ISO 4406:1999 class 18/16/13.

VSD07HL



	FLOW CURVE NUMBER								
SPOOL			CTR						
	P→A	P→B	A→T	В→Т	P→T	$\begin{array}{c} A {\longrightarrow} T \\ B {\longrightarrow} T \end{array}$			
A, 1A, 2A	1	1	3	4	-	-			
В	1	1	4	4	2	-			
F	1	1	4	4	-	4			
L	2	2	4	5	4	-			

6.1 PRESSURE DROPS Δp -Q - PILOT OPERATED VALVES


(OBTAINED WITH VISCOSITY OF 170 SUS (36 cSt) AT 120°F (50°C)

VSD08HL

		FLOW CURVE NUMBER							
	SP00L					СТ	ΓR		
		P→A	Р→В	A→T	В→Т	P→T	A→T B→T		
A	A, 1A, 2A, 1B	2	2	3	3	-	-		
	В	1	1	2	1	4	-		
	F	2	2	2	1	-	4		
	L	4	4	3	5	6	-		

VSD10HL

	FLOW CURVE NUMBER							
CDOOL			CTR					
SPOOL	P→A	P→B	A→T	B→T	P→T	A→T B→T		
A, 1B	1	1	1	1	-	-		
В	2	2	2	2	3	-		
F	1	1	4	4	-	4		
L	2	2	2	2	4	-		

6.2 - Switching times

The values indicated refer to a solenoid valve working with piloting pressure of 100 bar, with mineral oil at a temperature of 50°C, at viscosity of 36 cSt and with PA and BT connections.

The energizing and de-energizing times are obtained at the pressure variation which occurs on the lines.

TIMES (± 10%)	ENERGIZING	DE- ENERGIZING		
[ms]	DC - AC	DC	AC	
VSD05*HL	70	60	160	
VSD07HL	80	70	170	
VSD08HL	90	70	170	
VSD10HL	120	90	190	

7 - HYDRAULIC CHARACTERISTICS

PRESSURES PSI (bar)	VSD05*	VSD07HL	VSD08HL	VSD10HL
Max pressure in P, A, B ports	320 (4600)	350 (5000)	350 (5000)	350 (500)
Max pressure in T line with external drainage	210 (3000)	250 (3600)	210 (3000)	210 (3000)
Max pressure in T line with internal drainage	210 (3000)	210 (3000)	210 (3000)	210 (3000)
Max pressure in Y line with external drainage	210 (3000)	210 (3000)	210 (3000)	210 (3000)
Min piloting pressure NOTE 1	78-175 (5 ÷ 12) 90-			90-175 (6 ÷ 12)
Max piloting pressure NOTE 2	210 (3000)	210 (3000)	210 (3000)	280 (4000)

NOTE 1: minimum piloting pressure can be the lower range value at low flows rates, but with higher flow rates the higher value is needed.

NOTE 2: if the valve operates with higher pressures it is necessary to use the version with external pilot and reduced pressure. Otherwise, the valve with internal pilot and pressure reducing valve with 30 bar fixed adjustment can be ordered.

Add the letter \mathbf{Z} to the identification code to order this option (see par. 5). Consider that, by adding the pressure reducing valve, the overall dimensions increase 40 mm in height.

MAXIMUM FLOW RATES		VSD05*HL VSD07HL		VSD08HL		VSD10HL			
Spool type		PRESSURES 3000 PSI 4600 PSI 3000 PSI 5000 PSI 3000 PSI 5000 PSI at (210 bar) at (320 bar) at (210 bar) at (350 bar) at (210 bar) at (350 bar)					3000 PSI at (210 bar)	5000 PSI at (350 bar)	
3L, 5L	[l/min]	32 (120)	26 (100)	52 (200)	40 (150)	130 (500)	118 (450)	198 (750) (NOTE)	158 (600) (NOTE)
Other spools	[""""]	40 (150)	32 (120)	80 (300)	80 (300)	158 (600)	130 (500)	232 (900)	185 (700)

NOTE: for the VSD10HL valve these values are the same even for 3B and 5B spools.

8. PILOT AND DRAIN CONFIGURATION

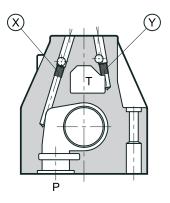
The VSD*HL valves are available with four pilot/drain configurations: internal/internal, internal/external, external/internal and external/external.

When internal pilot and/or drain are used, the corresponding 'x' and 'y' ports in the manifold must be plugged. Pilot pressure must be at least 70 psi (5 bar) greater than the pressure in the 'T' line.

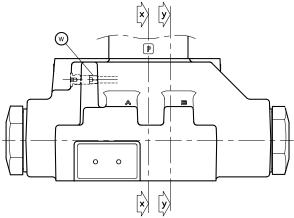
It may be desirable to use external pilot when system pressure is subject to wide flucuations. It is required to use external pilot or internal pilot with a pressure reducing valve when system pressure exceeds 3000 psi (210 bar) for the VSD05*HL, VSD07HL and VSD10HL.

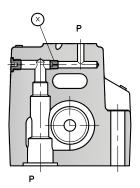

An external drain must be used when an open center (B) or a tandem center (L) spool is used, and is also recommended when using pilot checks. The version with external drain allows for higher tank line pressure in series circuits.

CODE	DESIGN	VSD05*HL, VSD	07HL, VSD10HL	VSD08HL		
	DESIGN	Pilot (X)	Drain (Y)	Pilot (X) (W)	Drain (Y)	
1	Internal Pilot / External Drain		•	• •	•	
2	External Pilot / External Drain	•	•	• •	•	
3	Internal Pilot / Internal Drain			•		
4	External Pilot / Internal Drain	•		• •		

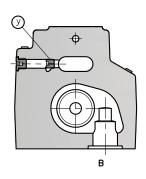


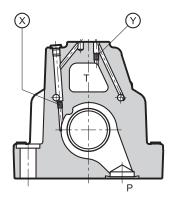
PLUG MOUNTING


VSD05*HL



VSD07HL




VSD08HL

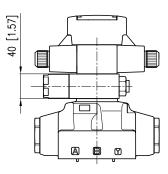
PLUG SIZE:

VSD05*HL	M5x6 mm	
VSD07HL	M6x8 mm	
VSD10HL	M6x8 mm	
VSD08HL	1/16" NPT Pipe Plug 1/16" NPT Pipe Plug with 0.070 (1.78mm) Orifice	

VSD10HL

8.1 INTERNAL PILOT OPTIONS

VSD* HL


PRESSURE REDUCING (Z)

THE PRESSURE REDUCING MODULE IS DESIGNED TO PROTECT THE VALVE FROM PILOT PRESSURES EXCEEDING 3000 PSI (210 BAR).

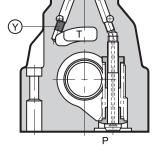
When the system pressure exceeds 3000 psi (210 bar) the use of the version with external pilot is mandatory, or alternatively, the version with optional Z internal pilot.

The pressure reducer has fixed adjustment of 430 psi (30 bar). This device is not available for the VSD05*HL.

To request this option add the letter "Z" into the internal pilot option box, in the identification code.

BACK PRESSURE VALVE (C70)

The back pressure valve is for valves with internal pilot and B or L spool types where system pressure may drop below the 70 psi (5 bar) required for pilot operation.


This device is available only for VSD07HL and VSD08HL.

NOTE: The back pressure valve can't be used as check because it doesn't assure the seal.

To request this option add the letters 'C70' in the internal pilot options box, in the identification code.

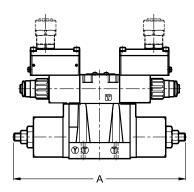
The backpressure valve is also available as a field conversion kit and can be easily mounted in the P port of the main control valve.

The kit includes 1 check assembly and related seals.

A B b

USE THE CODE BELOW TO ORDER THE KIT.

VALVE SERIES	SEAL MATERIAL	ORDERING NUMBER
VSD07HL	Buna N	VMA-4F1-A
VSDUTILE	Viton	VMA-4F2-A
VSD08HL	Buna N	VMA-5F1-A
VSDUOILE	Viton	VMA-5F2-A

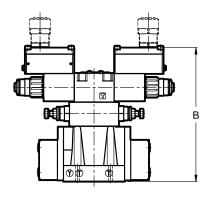


9 - OPTIONS

9.1 - Control of the main spool stroke: J

With the help of special side plugs, it is possible to introduce stroke controls in the heads of the piloted valve so as to vary the maximum spool clearance opening.

This solution allows control of the flow rate from the pump to the actuator and from the actuator to the outlet, obtaining a double adjustable control on the actuator.

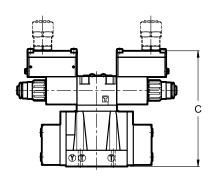


dimensions in mm (inches)

	VSD05*	VSD07	VSD08	VSD10
Α	280 (11.02)	319 (12.56)	401.5 (15.81)	520 (20.47)

9.2 - Control of the main spool shifting speed: KK

By placing a D03 type double flow control valve between the pilot solenoid valve and the main distributor, the piloted flow rate can be controlled and therefore the changeover smoothness can be varied.


dimensions in mm (inches)

	VSD05*	VSD07	VSD08	VSD10
В	218.5 (8.60)	225.5 (8.88)	254.5 (10.02)	310.5 (12.22)

9.3 - Subplate with throttle on line P

It is possible to introduce a subplate with a restrictor on line P between the pilot solenoid valve and the main distributor.

restrictor Ø0.8 for VSD05*, VSD07, VSD08 restrictor Ø1.5 for VSD10

dimensions in mm (inches)

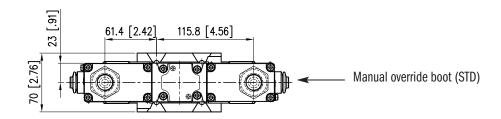
	VSD05*	VSD07	VSD08	VSD10
С	188.5 (7.42)	195.5 (7.70)	224.5 (8.84)	280.5 (11.04)

10. OVERALL AND MOUNTING DIMENSIONS FOR VSD05*HL VSD* HL

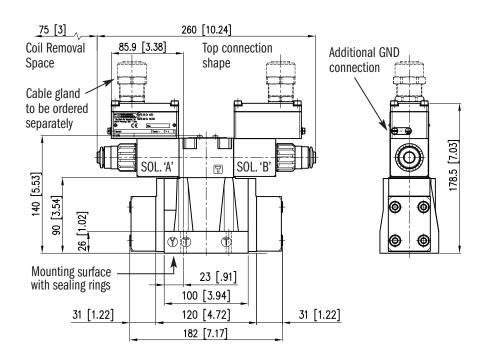
THREAD OF MOUNTING HOLE

1/4 - 20 UNC-2B x 0.60

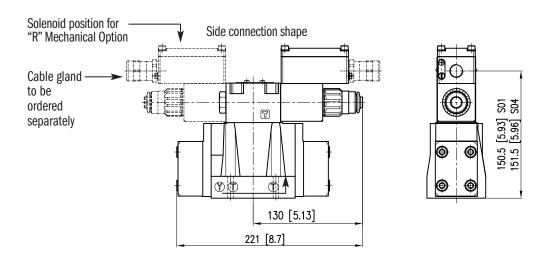
FASTENING


4 bolts - 1/4 - 20 UNC-2B X 1 1/2 Grade 8 or stronger

TIGHTENING TORQUE


6 lbf-ft (8 Nm)

SEALING RINGS


5 O-rings AS568-014 90 Shore A 2 O-rings AS568-012 90 Shore A

VSD05*HL-2*, 3*

VSD05*HL-1*, 5*

Dimensions in mm [IN]

VSD* HL

Dimensions in mm [IN]

11. OVERALL AND MOUNTING DIMENSIONS FOR VSD07HL

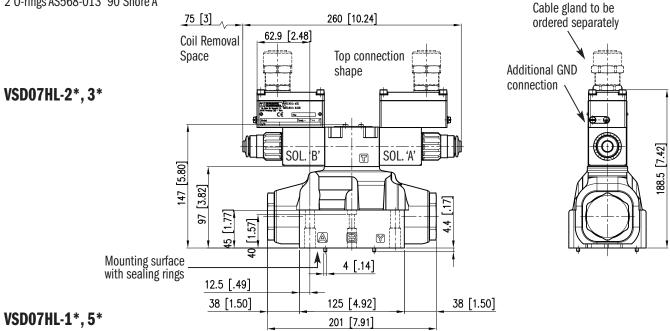
THREAD OF MOUNTING HOLE

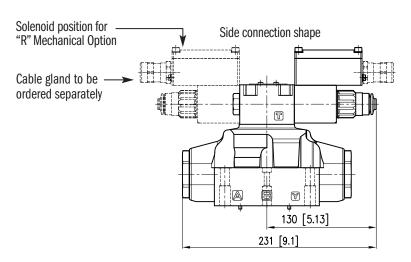
1/4 - 20 UNC-2B x 0.50 3/8 - 16 UNC-2B x 0.90

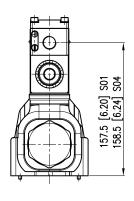
FASTENING

2 bolts - 1/4 - 20 UNC-2B X 2 Grade 8 or stronger 4 bolts - 3/8 - 16 UNC-2B X 2 1/2 Grade 8 or stronger

TIGHTENING TORQUE


1/4 - 20 UNC-2B: 6 lbf-ft (8 Nm) 3/8 - 16 UNC-2B: 30 lbf-ft (40 Nm)


38.4 [1.51] 138.8 [5.46] 92 [3.62] Manual override boot (STD) 34.9


SEALING RINGS

4 O-rings 22.22 mm ID x 2.62 mm CS90 Shore 90A

2 O-rings AS568-013 90 Shore A

19/30

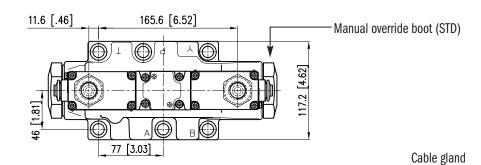
12. OVERALL AND MOUNTING DIMENSIONS FOR VSD08HL VSD* HL

Dimensions in mm [IN]

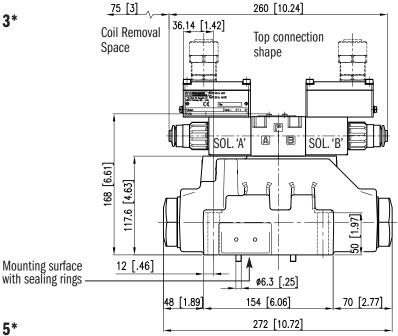
THREAD OF MOUNTING HOLE

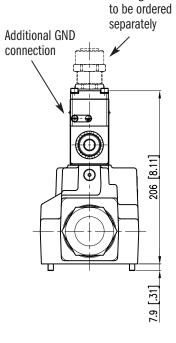
1/2 - 13 UNC x 0.70

FASTENING


6 bolts - 1/2 - 20 UNC X 2 1/2 Grade 8 or stronger

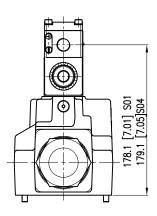
TIGHTENING TORQUE


90 to 100 lbf-ft (122 to 136 Nm)

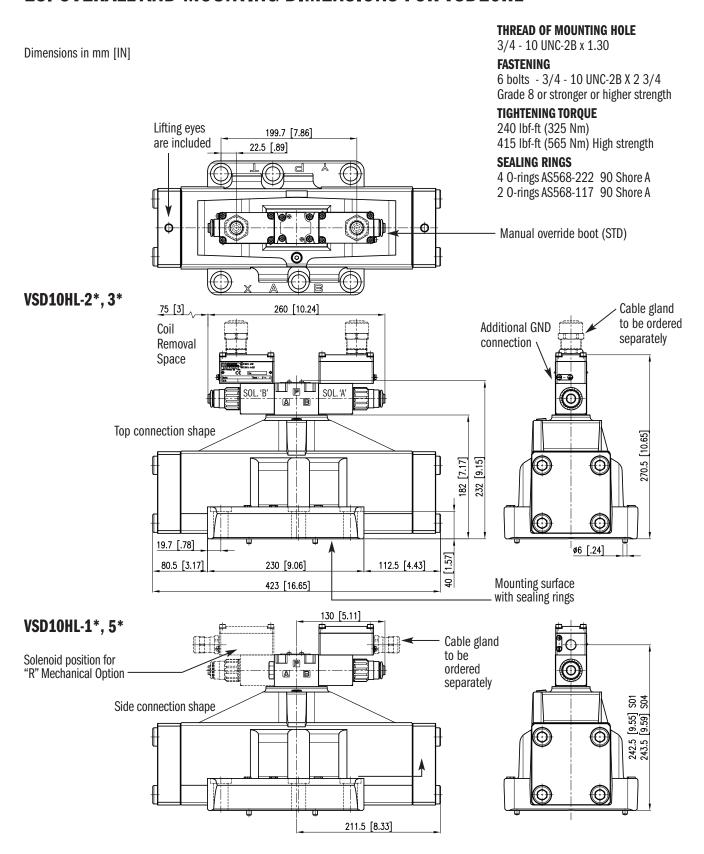

SEALING RINGS

4 O-rings AS568-215 90 Shore A 2 O-rings AS568-210 90 Shore A

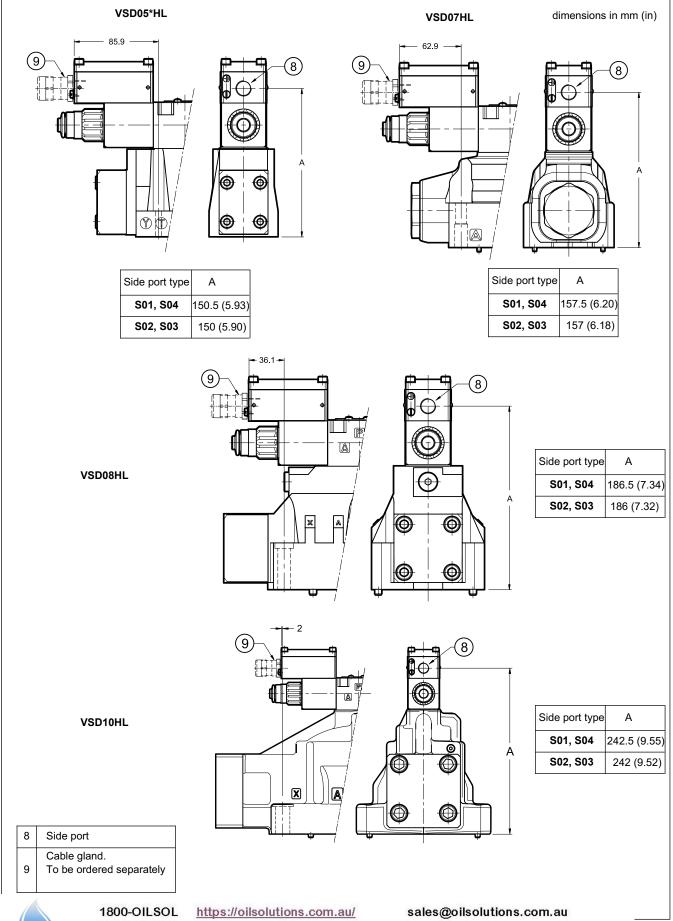



VSD08HL-2*, 3*

VSD08HL-1*, 5*



20/30


13. OVERALL AND MOUNTING DIMENSIONS FOR VSD10HL

VSD* HL

14 - VSD0*HL WITH SIDE CONNECTION - OVERALL AND MOUNTING DIMENSIONS

OIL SOLUTIONS

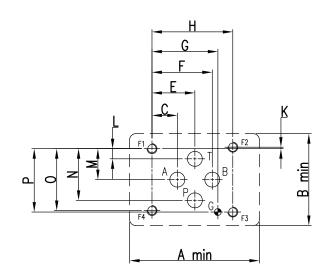
1800-645765

15. MOUNTING SURFACES

ALL THE MOUNTING SURFACES REFER TO NFPA T3.5.1 R2-2002 AND ISO 4401:2005 STANDARDS.

The mounting surface standards recommends metric coarse threads. However, subplates are commercially available with UNC threads. Select a bolt size that matches the threads in the mounting surface.

Dimensional tolerances are \pm 0.1 mm (0.004") for bolt and pin location; \pm 0.2 mm (0.008") for the other quotes.


The minimum depth of the blind hole G where required is 8 mm (0.31 in).

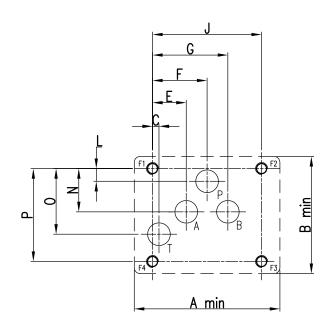
D03

	ММ	INCH
P, A, B, T MAX	Ø 7.0	Ø 0.276
G MAX	Ø 4.0	Ø 0.16
MOUNTING BOLT THREAD SIZE	M5	10-24 UNC 2B

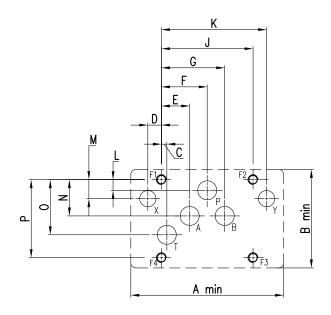
	ММ	INCH
Α	51.0	2.00
В	43.0	1.70
С	12.7	0.50
E	21.5	0.85
F	30.2	1.19
G	33.0	1.30
Н	40.5	1.594

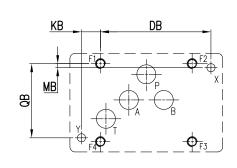
	ММ	INCH
K	0.75	0.03
L	5.10	0.20
М	15.5	0.61
N	25.9	1.02
0	31.0	1.22
P	31.8	1.25

D05


PORT FUNCTION:

P = PRESSURE PORT T = TANK PORT A = FIRST CYLINDER PORT B = SECOND CYLINDER PORT


	ММ	INCH
P, A, B, T MAX	Ø 11.2	Ø 0.44
MOUNTNG BOLT THREAD SIZE	M6	1/4 - 20 UNC


	ММ	INCH
A	90.0	3.54
В	58.0	2.28
С	3.20	0.126
E	16.7	0.66
F	27.0	1.06
G	37.3	1.47

	MM	INCH
J	54.0	2.125
L	6.30	0.25
М	11.2	0.44
N	21.4	0.84
0	32.5	1.28
Р	46.0	1.82

D05 - ALTERNATIVE A

PORT FUNCTION:

P = PRESSURE PORT T = TANK PORT

A = FIRST CYLINDER PORT

X = PILOT PORT

B = SECOND CYLINDER PORT

Y = DRAIN PORT

	ММ	INCH
P, A, B, T MAX	Ø 11.2	Ø 0.44
X, Y ALT. A	Ø 6.30	Ø 0.25
X, Y ALT. B	Ø 4.80	Ø 0.19
MOUNTNG BOLT THREAD SIZE	M6	1/4 - 20 UNC

	ММ	INCH
A	90.0	3.54
В	58.0	2.28
С	3.20	0.126
D	8.00	0.31
E	16.7	0.66
F	27.0	1.06
G	37.3	1.47

	ММ	INCH
J	54.0	2.125
K	62.0	2.44
L	6.30	0.25
М	11.2	0.44
N	21.4	0.84
0	32.5	1.28
P	46.0	1.82

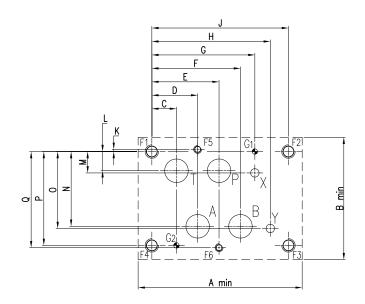
	MM	INCH
DB	65.1	2.563
КВ	11.2	0.44
МВ	2.40	0.09
QB	43.7	1.72

NFPA D05 and ISO 4401-05 indicates different diameters for X and Y holes:

NFPA: Ø 9.6 max in D05 alt A Ø 4.8 max in D05 alt B

ISO: Ø 6.3 max both

1800-OILSOL 1800-645765


https://oilsolutions.com.au/

sales@oilsolutions.com.au

	ММ	INCH
P, A, B, T MAX	Ø 17.5	Ø 0.69
X, Y MAX	Ø 6.30	Ø 0.25
G MAX	Ø 4.00	Ø 0.16
MOUNTING BOLT THREAD SIZE F1 - F4	M10	3/8 - 16 UNC
MOUNTING BOLT THREAD SIZE F5 - F6	M6	1/4 - 20 UNC

	ММ	INCH
A	122.0	4.80
В	91.0	3.58
С	18.3	0.72
D	34.1	1.34
E	50.0	1.97
F	65.9	2.60
G	76.6	3.016
Н	88.1	3.47

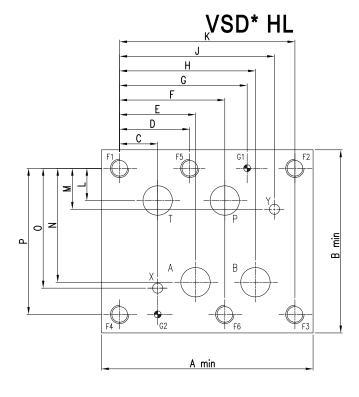
	ММ	INCH
J	101.6	4.00
K	1.60	0.063
L	14.3	0.56
М	15.9	0.626
N	55.6	2.19
0	57.2	2.25
P	69.9	2.75
Q	71.5	2.815

D08

	ММ	INCH
P, A, B, T MAX	Ø 25.0	Ø 0.98
X, Y MAX	Ø 11.2	Ø 0.44
G MAX	Ø 7.50	Ø 0.30
MOUNTING BOLT THREAD SIZE	M12	1/2 - 13 UNC

	ММ	INCH
A	154.0	6.00
В	116.0	4.57
C	17.5	0.69
D	29.4	1.157
E	53.2	2.09
F	77.0	3.03
G	94.5	3.719
Н	100.8	3.97

	ММ	INCH
J	112.7	4.44
K	130.2	5.125
L	4.80	0.187
M	17.5	0.69
N	19.0	0.75
0	73.0	2.874
P	74.6	2.93
Q	92.1	3.625



D10

	ММ	INCH
P, A, B, T MAX	Ø 32	Ø 1.25
X, Y MAX	Ø11.2	Ø.44
G MAX	Ø 7.5	Ø.30
MOUNTING BOLT THREAD SIZE	M20	3/4-10 UNC

	ММ	INCH
A	230.0	9.06
В	199.0	7.83
С	41.3	1.63
D	76.2	3.00
E	82.5	3.25
F	114.3	4.50
G	138.6	5.457
Н	147.6	5.81

	ММ	INCH
J	168.3	6.63
K	190.5	7.50
L	35.0	1.38
М	44.5	1.75
N	123.8	4.87
0	130.2	5.13
P	158.8	6.25

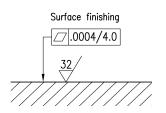
16. APPLICATION DATA

FLUIDS

All pressure drops shown on these data pages are based on 170 SUS fluid viscosity and 0.87 specific gravity. For any other specific gravity (G1) the pressure drop (ΔP) will be approx. $\Delta P1 = \Delta P$ (G1/G). See the chart for other viscosities.

FLUID VISCOSITIES	Cst	10	14.5	32	36	43	54	65	76	86	108	216	324	400
	SUS	60	75	150	170	200	250	300	350	400	500	1000	1500	1900
MULTIPIER		0.77	0.81	0.97	1.00	1.04	1.10	1.15	1.20	1.24	1.31	1.56	1.72	1.83

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals. For fluids HFDR type (phosphate esters) use FPM seals (code G). For the use of other kinds of fluid such as HFA, HFB, HFC, please consult our technical department. Using fluids at temperatures higher than 180 degrees F causes the accelerated degradation of seals as well as degradation of the fluids physical and chemical properties.

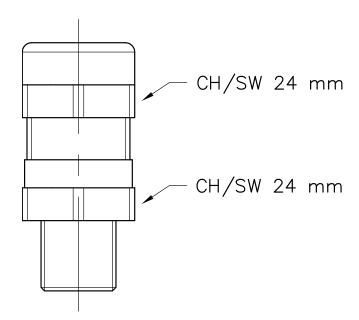

From a safety standpoint, temperatures above 130 degrees F are not recommended.

RANGE TEMPERATURES:	Ambient	-4 to +176°F	-20 to +80°C	
RANGE TEMPERATURES.	Fluid	-40 to +176°F	-40 to +80°C	
FLUID VISCOSITY	Range	60-1900 SUS	10 - 400 cSt	
FLOID VISCOSITI	Recommended	120 SUS	25 cSt	
FLUID CONTAMINATION		ISO 4406:1999 Class 20/18/15		

INSTALLATION

The configurations with centering and offset springs can be mounted in any position without impairing correct operation; instead, those without springs and with mechanical detent must be mounted with the longitudinal axis horizontal.

Valves are fixed by means of screws or tie rods on a flat surface with planarity and roughness equal to or better than those indicated in the relative symbols. If minimum values are not observed, fluid can easily leak between the valve and support surface.



17. WIRING VSD* HL

CABLE GLANDS

Cable glands must be ordered seperately; Continental Hydraulics offers some types of cable glands with the following features:

- Version for non-armoured cable, external seal on the cable (suitable for diameter 8 to 10 mm cables)
- According to ATEX II 2GD, IM2, IECExGb, Db, Mb certified
- Cable gland material: Nickel and Brass
- Rubber tip material: Silicone
- Ambient temperature range: -70°C [-94°F] to +220°C [+428°F]
- Protection degree: IP66/IP68

DESCRIPTION	NOTES	CONNECTION TYPE	ITEM
CGK2/NB-01/10	M20 x 1.5 - ISO 261 Male Tread	T01 - S01	M3908108001
CGK2/NB-02/10	Version with Gk 1/2 - UNI EN 10226-2 Male Tread	T02	M3908108002
CGK2/NB-03/10	Version with 1/2" NPT - ANSI B1.20.1 (ex ANSI B2.1)	Т03	M3908108003
CGK2/NB-04/10	Version with M16 x 1.5 - ISO 261 Male Thread	\$03	M3908108004

NOTES:

CGK2/NB-01/10 & CGK2/NB-04/10

It is supplied equipped with silicone seal, that must be assembled between the cable gland and the coil cover, so as to ensure IP66/IP68 protection degree.

CGK2/NB-02/10 & CGK2/NB-03/10

In order to ensure IP66/IP68 protection degree, the customer must apply LOCTITE 243™ Threadlocker or similar between the cable gland connection thread and the coil cover.

VSD* HL **BOLT KITS**

D03 SIZE	BD03-125	Valve Only	1008406	
D05 SIZE	BD05 -138 - B	Valve Only	1019657	
D05* SIZE	BD05H-150-B	Valve Only	1009397	
D07 SIZE	BD07 - 250	Valve Only	1009400	
D08 SIZE	BD08 - 250	Valve Only	1009401	
D10 SIZE	BD10-275	Valve Only	1013038	

SEAL KIT

D03 SIZE	Buna Seal Kit	1013188
D03 312L	Viton Seal Kit	1013096
D05 SIZE	Buna Seal Kit	101965 8
D03 312L	Viton Seal Kit	
D05* SIZE	Buna Seal Kit	1013174
D03 312L	Viton Seal Kit	1013175
D07 SIZE	Buna Seal Kit	1013176
DOT 312L	Viton Seal Kit	1013177
D08 SIZE	Buna Seal Kit	1013178
500 5122	Viton Seal Kit	1013179
D10 SIZE	Buna Seal Kit	1013972
DIO OILL	Viton Seal Kit	1013973

SUBPLATES

DO5 alt. A SIZE	AD05JESPS16S	Aluminium	SAE-16	351716AJ
DOS alt. A SIZE	DD05JESPS16S	Ductile	SAE-16	351716AK
D07 SIZE	AD07SPS016S	Aluminium	SAE-16	1013039AB
DOT SIZE	DD07SPS016S	Ductile	SAE-16	1013039AC
D08 SIZE	AD08SPS020S	Aluminium	SAE-20	265803AP
DOG SIZE	DD08SPS020S	Ductile	SAE-20	265803AL
D10 SIZE	AD10SPS032S	Aluminium	SAE-32	1013040AB
DIO OILL	DD10SPS032S	Ductile	SAE-32	1013040AC

- NOTES:

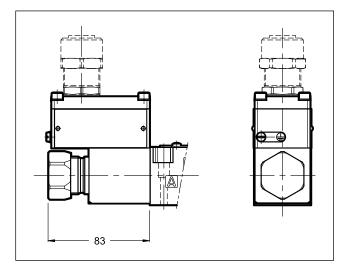
 1. Max pressure for aluminum subplates: 3000 psi (210 bar)
 2. Max pressure for ductile subplates: 5000 psi (350 bar)
 3. Always verify subplate port size is proper for the application

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

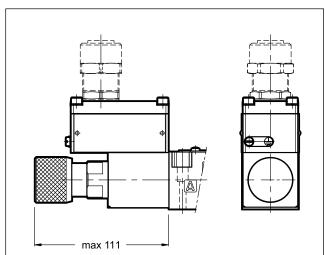
sales@oilsolutions.com.au

18 - MANUAL OVERRIDES


18.1 - CB - Blind ring nut

The metal ring nut protects the solenoid tube from atmospheric agents and isolates the manual override from accidental operations. The ring nut is tightened on a threaded fastener that keeps the coil in its position even without the ring nut.

To access the manual override loosen the ring nut and remove it; then reassemble hand tightening, until it stops.


Activate the manual override always and only with nonsparking tools suitable for use in potentially explosive atmospheres.

More information on safe use of explosion-proof components are provided in the instruction manual, always supplied with the valve.

18.2 - CK1 - Knob manual override

This turning knob is available for DC valves only.

18.3 - CH - Lever manual override

The lever manual override is available for DS3K only. The seals choice leads the type of the standard ring nut to be mounted. The boot isn't a redundant manual override, instead acts as protection for the tube. The lever device is always placed at side A.

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

sales@oilsolutions.com.au

4895 12th Avenue East Shakopee, Minnesota 55379 952-895-6400 / F 952-895-6444 www.continentalhydraulics.com