

Catalogue 9 **STAUFF Filtration Technology**

PO Box 38 Strathfieldsaye, VIC, 3551 1800 OIL SOL 1800 645 765 sales@oilsolutions.com.au

www.oilsolutions.com.au

"For All Your Hydraulic Needs"

Germany

Walter Stauffenberg GmbH & Co. KG

Im Ehrenfeld 4 58791 Werdohl Tel.: +49 2392 91 60 Fax: +49 2392 91 61 03 E-Mail: sales@stauff.com

www.stauff.com

STAUFF products and services are globally available through wholly-owned subsidiaries and a tight network of authorised distributors and representatives in all major industrial regions of the world.

You can find detailed contact information on the last two pages of this product catalogue or at www.stauff.com.

Please note: Unless otherwise stated, all data and figures in this product catalogue are approximate values and are only valid as references, which are not binding (also in respect to any third parties' rights of protection) and thus do not release the customer / user from checking and testing the suitability of the products for the foreseen purposes. Therefore, data and figures can only be used in a limited sense for construction purposes.

The application of the products is beyond the control possibilities of the manufacturer and, therefore, is exclusively subject to the responsibility of the customer / user.

In the event that a liability is nevertheless considered, any compensation will be limited to the value of the goods supplied by the manufacturer and used by the customer / user. As a matter of course, the manufacturer guarantees the perfect quality of all products in accordance with the General Terms and Conditions of Business and Sale.

Subject to modifications due to the ongoing development and improvement of the products.

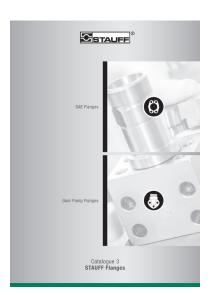
With the publication of this product catalogue, previous editions are no longer valid.

C

Introduction	4 - 11
Filtration Guideline	12 - 23
Replacement Filter Elements	24 - 33
Pressure Filters	34 - 65
Return-Line Filters	66 - 125
In-Line Filters	126 - 147
Spin-On Filters	148 - 177
Offline and Bypass Filters	178 - 205
Filtration Systems	206 - 209
Appendix (Product-Specific Abbreviations / Global Contact Directory)	210 - 215

1800-OILSOL 1800-645765


https://oilsolutions.com.au/


Catalogue 1 **STAUFF Clamps**

- Block Clamps
- Special Clamps
- Light Series Clamps
- Saddle Clamps
- U-Bolt Clamps
- Metal Clamps
- Construction Series

Catalogue 2 **STAUFF Connect**

- Tube Connectors
- Assembly Tools and Devices

Catalogue 3 **STAUFF Flanges**

- SAE Flanges
- Gear Pump Flanges

Catalogue 4 **STAUFF Hose Connectors**

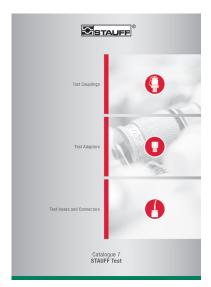
- Hose Connectors
- High-Pressure Hose Connectors

Catalogue 5 **STAUFF Quick Release Couplings**

- Push-to-Connect Couplings
- Multi Couplings
- Screw-to-Connect Couplings

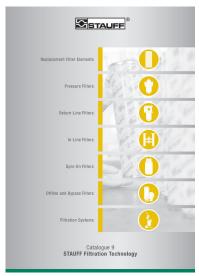
Catalogue 6 **STAUFF Valves**

- Two-Way Ball Valves
- Multi-Way Ball Valves
- Flow Control and Check Valves
- Gauge Isolator Valves



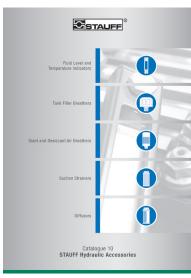
1800-OILSOL 1800-645765

https://oilsolutions.com.au/


Catalogue 7 **STAUFF Test**

- Test Couplings
- Test Adaptors
- Test Hoses and Connectors

Catalogue 8 **STAUFF Diagtronics**


- Pressure Gauges
- Hydraulic Testers
- Oil Analysis Equipment

Catalogue 9

STAUFF Filtration Technology

- Replacement Filter Elements
- Pressure Filters
- Return-Line Filters
- In-Line Filters
- Spin-On Filters
- Offline and Bypass Filters
- Filtration Systems

Catalogue 10

STAUFF Hydraulic Accessories

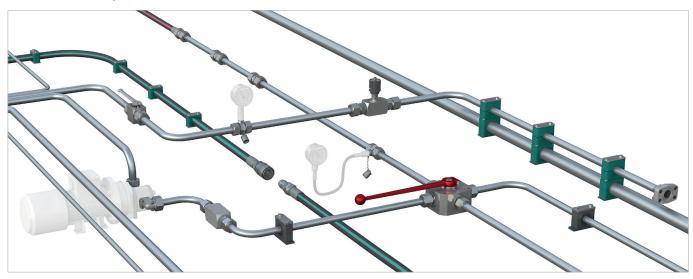
- Fluid Level and Temperature Indicators
- Tank Filler Breathers
- Giant and Desiccant Air Breathers
- Suction Strainers
- Diffusors

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

For more than 50 years, the companies of STAUFF Group have been developing, manufacturing and distributing pipework equipment and hydraulic components for mechanical and plant engineering and for service and industrial maintenance.

In addition to mobile and industrial hydraulic machinery, typical applications also include commercial and special purpose vehicles, rail transportation and energy technology. Likewise, STAUFF products are used in marine, oil and gas applications and in the process, food and chemical industries.

The overall range currently includes about 40000 standard products as well as numerous special and system solutions according to customer's specifications or based on our in-house development.


All STAUFF products undergo relevant testing in accordance with international regulations and are governed by the high standards of the in-house quality management system. Furthermore, many items have received certifications and approvals from various international institutes, organisations and authorities who have independently confirmed the quality and performance of the products.

Wholly-owned manufacturing, sales and service facilities in 18 countries and a tight global network of authorised distribution partners ensure high presence and service paired with a maximum of availability.

Quality Management – ISO 9001:2015 Environmental Management – ISO 14001:2015 Safety Management 0HSAS – 18001:2007

STAUFF LINE Components

With the seven dedicated STAUFF Line product groups

- STAUFF Clamps
- STAUFF Connect
- STAUFF Flanges
- STAUFF Hose Connectors
- STAUFF Quick Release Couplings
 STAUFF Values
- STAUFF Valves
- STAUFF Test

from own, in-house development and manufacturing, the companies of the STAUFF Group provide a comprehensive range of components for fastening and connecting pipes, tubes and hoses for mobile and industrial hydraulic applications and many other industries.

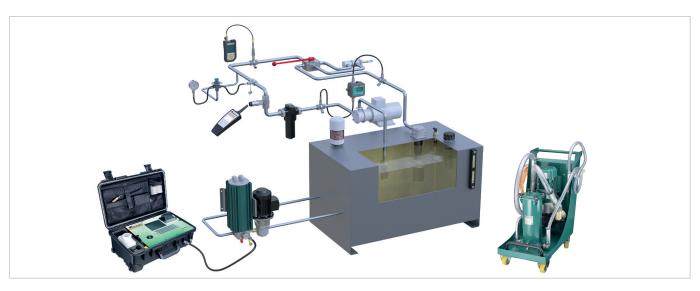
The portfolio is completed by components for shutting-off, regulating, throttling and measuring fluid media.

In order to perfectly match each other, STAUFF Line products are designed and offered on a high, uniform level of quality. A large proportion of the range made from steel comes as standard with the premium STAUFF Zinc/Nickel surface coating, which is also optionally available for many of the other components.

This coating offers the most reliable surface protection far beyond the previous market standards – even after transport, handling and assembly of the components – and meets all current legal requirements.

If desired, Original Equipment Manufacturers can be supported with value-added services, from **technical consultation** to **pre-assembly**, **assembly and kitting** as well as **logistics services**:

- Support with the selection of suitable standard components and ordering options; provision of customised solutions according to customer's specifications or based on our in-house development – from prototyping to large scale production
- Analysis and optimization of existing and design and developments of new systems aimed at increasing the efficiency and performance of machines and equipment and creating value for customers by reducing the total cost
- Pre-assembly, assembly and kitting of individual components to customer-specific system modules
- Individually coordinated procurement solutions
 (e.g. web shop and electronic data interchange) and
 supply models (e.g. from warehousing of customised
 components to Kanban logistics and just-in-time delivery
 of pre-fabricated system modules to the assembly lines of
 the customers) aimed at optimising material flows



6

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Aligned with the needs of the market, the product groups

- STAUFF Test
- STAUFF Diagtronics
- STAUFF Filtration Technology
- STAUFF Hydraulic Accessories

include a comprehensive range of analogue and digital measuring equipment and devices, filtration systems and replacement filter elements as well as accessories for the construction of tanks, reservoirs, power packs and gear boxes in mobile and industrial hydraulics.

The offer is completed by relevant value-added services:

- Support with the selection of suitable components and ordering options; provision of customised solutions according to customer's specifications or based on our in-house development – from prototyping to large scale production
- Analysis of existing hydraulic circuits aimed at filtration systems, tank components and monitoring devices that perfectly match to the specific requirements, and developing integrated concepts to increase the efficiency and performance of machines and equipment
- Individually coordinated procurement solutions and supply models

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

STAUFF Filtration Technology

The STAUFF Filtration Technology product range contains an extensive product range in the areas of filtration and purification of oils and other media, which fully meets - or even exceeds - the requirements of modern service and maintenance of machines and equipment.

As an experienced manufacturer, STAUFF provides quick and direct access to a complete range of replacement filter elements for industrial liquids such as hydraulic and lubrication oils, heavy fuels, water, chemicals, coolants and other media – equal in form, fit and function to the original products while maintaining or surpassing their performance.

Flexible manufacturing lines and extensive stock-keeping in the country of destination guarantee fast reaction times and shortest delivery times.

STAUFF guarantees prompt service, even for customised solutions according to customer's specifications or based on our in-house development.

STAUFF filter housings and systems can be installed in the pressure, suction of return line. They are already planned in suitable positions in the hydraulic circuit during the design phase of a machine, or added at a later stage in the course of retrofitting or upgrading.

Offline and bypass filters, which are either used as portable units or installed permanently, complete the product portfolio.

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

www.stauff.com/catalogues

The STAUFF online catalogue centre at www.stauff.com/catalougues provides fast and direct access to digital versions of this as well as other STAUFF product catalogues in all available languages.

Online Page-Flip Catalogues

- Easy navigation through index or the powerful full text search functionality
- Contents can be shared and forwarded by e-mail, printed or downloaded and saved in PDF file format
- Also suitable for mobile devices

Download Catalogues

 Download entire product catalogues and save them in PDF file format

Catalogue Request

• Contact form to request printed copies of the product catalogue as well as digital copies on USB stick

The fastest way to the online page-flip catalogue:

The links that can be found at the bottom edge of all pages of this product catalogue will lead you directly to the corresponding page in the online page-flip catalogue.

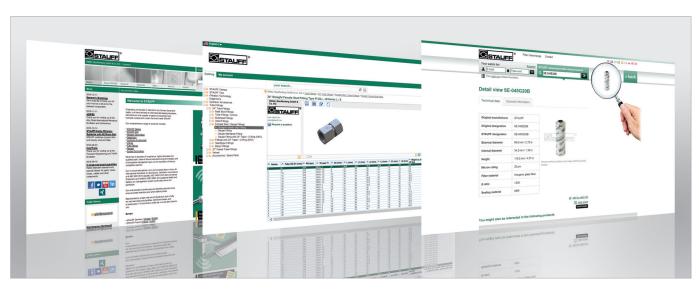
In doing so, contents can be searched, shared and forwarded by e-mail, printed or downloaded and saved in PDF file format.

Scan the QR code next to the direct link with the camera of your mobile device* and also use the functions in this way.

* may require a suitable app

Catalogue 9 • Edition 04/2020

www.stauff.com/9/en/#10



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

www.stauff.com

General information about the companies of STAUFF Group, latest business and product news as well as complete global contact details

Follow STAUFF and keep yourself updated:

Facebook

www.facebook.com/stauffgroup

Twitte

www.twitter.com/stauffgroup

Linkedin

www.linkedin.com/company/stauff

Youtube

www.youtube.com/stauffgroup

www.stauff.com/cad

Immediate access to and free download of 3D models and 2D drawings for a growing number of STAUFF products

www.filterinterchange.com

Online database for the quick and easy identification and interchange of almost all common brands and types of replacement filter elements

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Filtration Guideline	12 - 23
Filtration - Why?	15
Contamination	15
STAUFF Filter Components	16 - 17
Test Standards and Oil Purity	18
Short & Curt: Filter Rating	19
B-Value and Separations Efficiency	19
Filtration Terminology	20 - 21
Choice of Filters / Examples of Calculation	22 - 23

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Filtration - Why?

Good hydraulic filtration is gaining more and more importance in the use of hydraulic systems.

Reducing contamination in the hydraulic system will reduce the wear of the components and thus extend the service life of the machine. This will prevent production downtime and lower the overall production costs.

Right from the beginning, there is contamination in a new hydraulic system, which reduces the service life of the system and its components such as valves and cylinders without any or with inadequate filtration.

This built-in dirt is created during the manufacturing of the components and mainly consists of coarse particles.

In addition to the contamination that arises during operation of the system, e.g. abrasive wear, dirt particles can also get into the system when it is filled with hydraulic oil. This is called ingress contamination.

Choosing the right filter contributes significantly to prevent the dangers mentioned above thereby ensuring efficient operation even after many years.

Reduction of Contamination

- Extension of service life
- Extension of maintenance intervals
- Reduction of machine downtime
- Reduction of environmental pollution
- ► Cost savings for the user

Contamination

Particle Sizes (Selection)

- \blacksquare 100 μm table salt, fine sand
- \blacksquare 75 μm diameter of a human hair
- 60 µm flower pollen
- 50 µm fog
- 30 µm (from approx.) resolution of the human eye
- 15 µm fine particles
- 7 µm red blood cells
- 2 µm bacteria
- 1 μm layer of lubricating film (for comparison)

Type of Contamination

The most frequent ones are:

- Solid particles
- Free and dissolved water
- Non-dissolved air

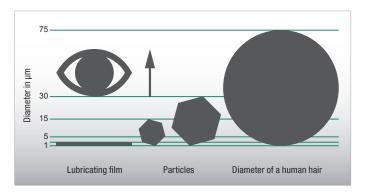
A majority of the contamination can be removed with filtration.

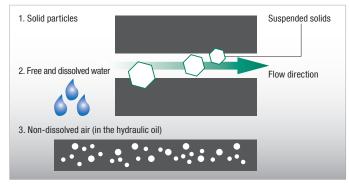
Origin of Contamination

The main cause of failures and downtimes is dirt in the hydraulic system.

Failure analysis indicate that 80% of the failures are caused by faults in the hydraulic system. 90% of them are caused by impurities in the hydraulic oil.

Sources of External Contamination


- Filling and refilling the hydraulic tank
- Inadequately dimensioned breathers
- Damaged tank seals
- · Replacement of hydraulic lines and components (pumps, cylinders)
- Impurities in the air


Types of Internal Contamination

- Contamination on / in the components caused by the manufacturing process (e.g. chips)
- Contamination on the components caused by the installation of the components

Sources of Internal Contamination

- Disintegration of particles from high pressure changes and tension on the surface of hydraulic components (e.g. cavitation)
- Material erosion that occurs at places in the hydraulic units due to the impact of pressurised liquid at high speeds (erosion wear)

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

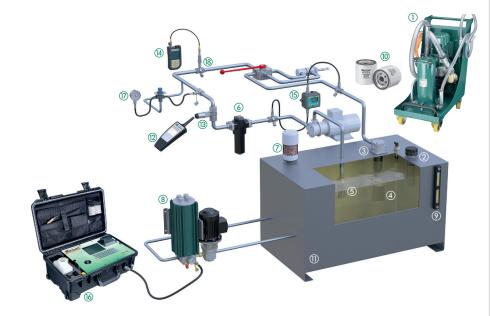
Selection of Components within the Hydraulic Circuit

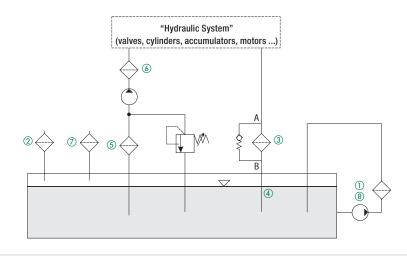
SMFS-U 1 STAUFF Mobile Filter System ② STAUFF Plastic Filler Breather SPB 3 STAUFF Return-Line Filter RF 4 STAUFF Diffusor SRV (5) STAUFF Suction Strainer SUS 6 STAUFF Pressure Filter SF STAUFF Desiccant Air Breather SDB 8 STAUFF Offline Filter 0LS STAUFF Level Gauge SNA (1) STAUFF Spin-On Filter SSF ① Oil tank

12 STAUFF Reader

PT-RF

(13) STAUFF Pressure Transmitter PT-RF


PPC STAUFF Hydraulic Tester


(5) STAUFF Particle Monitor LPM-II

STAUFF Laser Particle Counter LasPac-II

7 STAUFF Pressure Gauge SPG

(18) STAUFF Test Coupling SMK / SKK

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

STAUFF Filter Components

Pressure Filters Series SF / SF-TM / SFZ / SFA / SMPF (see page 34 - 35)

Return-Line Filters Series RF / RFA / RFB / RFS / RTF (see page 66 - 125)

Diffusers / Suction Strainers / Filler Breathers / Desiccant Air Breathers (see Catalogue No. 10 - Hydraulic Accessories)

Offline and Bypass Filters / Mobile Filter Units (see page 178 - 209)

Spin-On Filters (see page 148 - 177)

Pressure Filters (a) are placed behind the pump and clean the hydraulic oil before it flows through down-stream components like valves, cylinders and so on. The main reason for pressure filtration is the protection of downstream, sensitive components.

Eroded particles from the pump are immediately filtered out of the hydraulic oil. Besides working as a protection filter, Pressure Filters also help to maintain the required purity class.

Because it is placed right behind the pump, a Pressure Filter has to withstand the maximum system pressure. The filter element in the Pressure Filter also has to withstand the loads and is more intricately constructed, for example as a Return-Line Filters element.

Return-Line Filters ③ are installed in the Return-Line, on top of or within the oil tank. They filter the hydraulic oil before it flows back into the reservoir. This ensures that contamination arising in the components does not get into the tank. Return-Line Filters maintain the targeted purity class like Pressure Filters. However, because of their arrangement, they do not fulfil the additional function of a protection filter. In contrast to a Pressure Filter, it only has to withstand low pressure levels.

Diffusers (4) are used in combination with Return-Line Filters and ensure that the returning oil flow is settled before it reaches the oil tank thereby preventing foaming and re-suspension of deposited dirt.

The job of **Suction Strainers** (a) is mainly to provide functional protection of the downstream pumps in the circulation. Suction Strainers always have to be provided if the risk of pump damage from coarse impurities is particularly high. This risk exists if impurities are collected in the tank and if they can't be filtered out afterwards. Suction Strainers are coarse filter elements with a micron rating that is usually bigger than 100 µm.

Filler Breathers ② are mounted on the oil tank and prevent the entry of dirt from the surroundings during tank breathing. They should be chosen with a filter unit that is similar to the working filter (Pressure Filter, Return-Line Filter).

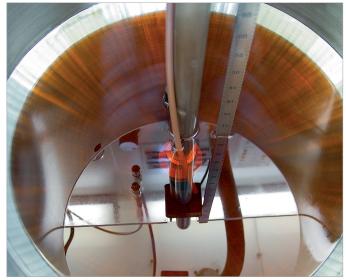
The replacement cycles of filter inserts is highly dependent on the surrounding conditions of the hydraulic system.

Another variant of the breather is the **Desiccant Air Breather** \bigcirc . The additional function of this filter is dehumidification of the inflowing air with a special silicate gel.

Offline / Bypass Filters (a) / (1) are not part of the main hydraulic system. They are supplementary to achieve the best possible filtration results. Because of the high efficiency of the Offline / Bypass Filters, purity levels are reached that cannot be achieved with conventional main filter systems.

Offline Filters work with an integrated motor / pump unit that draws in the fluid from the system, filters it and then feeds it back into the tank. Because the offline filter is independent from the hydraulic main circuit, i.e. it can still be operated if the hydraulic system is switched off, it is used in practice for continuous cleaning of the tank.

Bypass Filters on the other hand use the existing system pressure to draw a small volumetric flow out of the hydraulic system for filtration. They are only active while the unit is in operation.


Another mobile variant of the bypass filter is the Mobile Filter System 1.

STAUFF provides a complete range of **Spin-On Filters** (iii) which can be used either as Suction Filters or as Return-Line filters for low pressure applications.

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Test Standards and Oil Purity

Definition of the Required Micron Rating

Essentially, the components found in the hydraulic system determine the micron rating of the filtration system.

To guarantee a reliable mode of operation over the years, it is mandatory to maintain the optimum oil purity class for specific components.

The most sensitive component determines the choice of filter material and micron rating.

To determine the oil purity according to ISO 4406 (1999), a laser particle counter is used to count particles that are >4 μm $_{(c)},$ >6 μm $_{(c)}$ and >14 μm $_{(c)}$ in 100 ml of hydraulic oil. The number of particles is then assigned with a classification number (e.g. 14/11/8) that then corresponds to the ISO purity class. Please note here that the number of particles doubles for the next higher class. The cleanliness level that has to be achieved is an important criterion for choosing the right filtration system.

STAUFF Filter Elements are subject to the following Test Methods

■ ISO 2941	Collapse and burst resistance

■ ISO 2942 Verification of fabrication integrity (bubble point test)

Compatibility with hydraulic media ■ ISO 2943

■ ISO 3723 End load test

■ ISO 3724 Flow fatigue characteristics ■ ISO 3968 Flow characteristics

■ ISO 16889 Filtration performance test (multi-pass method)

Number of particles in 100 ml fluid		Classification numbers ISO 4406 (1999)		ers
More than	Less than	> 4 µm _(c)	> 6 µm _(c)	> 14 µm _(c)
16000000	32000000	25	25	25
8000000	16000000	24	24	24
4000000	8000000	23	23	23
2000000	4000000	22	22	22
1000000	2000000	21	21	21
500000	1000000	20	20	20
250000	500000	19	19	19
130000	250000	18	18	18
64000	130000	17	17	17
32000	64000	16	16	16
16000	32000	15	15	15
8000	16000	14	14	14
4000	8000	13	13	13
2000	4000	12	12	12
1000	2000	11	11	11
500	1000	10	10	10
250	500	9	9	9
130	250	8	8	8
64	130	7	7	7
32	64	6	6	6
16	32	5	5	5

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

STAUFF Laser Particle Counter LasPaC-II, LPM-II and Bottle Sampler

Short & Curt: Filter Rating

(For exact recommendation see SCCP - STAUFF Contamination Control Program see on page 15)

Туре	Component	ISO 4406 Code	Recommended Filter Rating
Duran	Piston Pump (Slow Speed, Inline)	22/20/16	20 μm
	Gear Pump	19/17/15	20 μm
Pump	Vane Pump	18/16/14	5 μm
	Piston Pump (High Speed, Variable)	17/15/13	5 μm
	Gear Motor	20/18/15	20 μm
Motor	Vane Motor	19/17/14	10 μm
IVIOIOI	Radial Piston Motor	19/17/13	10 μm
	Axial Piston Motor	18/16/13	5 μm
	Directional Valves (Solenoid)	20/18/15	20 μm
	Check Valves	20/18/15	20 μm
	Logic Valves	20/18/15	20 μm
	Cartridge Valves	20/18/15	20 μm
Valve	Pressure Control Valves (Modulating)	19/17/14	10 μm
vaive	Flow Control Valves	19/17/14	10 μm
	Standard Hydraulic <100 bar / <1450 PSI	19/17/14	10 μm
	Proportional Valves	18/16/13	5 μm
	Servo Valves <210 bar / <3045 PSI	16/14/11	3 µm
	Servo Valves >210 bar / >3045 PSI	15/13/10	3 µm
Actuator	Cylinder	20/18/15	20 μm

B-Value and Separations Efficiency

To select filtration that meet the requirements, performance characteristics like the filter fineness, the filtration efficiency, the dirt-hold capacity and the pressure loss has to be observed.

The β -value as per ISO 16889 is the relevant characteristic value for the filtration efficiency. The β -value is the ratio of particles before $(N_{up\,x})$ and after $(N_{down\,x})$ the filter related to a specific particle size x.

$$\beta x = \frac{N_{up \ x}}{N_{down \ x}}$$

 $B_{10}>200$ means that of 1000 particles that are 10 μm in size, only five particles can pass through the filter. 995 particles will be trapped by the filter element.

Popular filters with inorganic glass fibre medium have to achieve a B-value of at least 200 in order to meet the demands placed on hydraulic filtration today.

The filtration efficiency, also called the retention rate, is directly related to the β -value and is calculated as follows:

$$E = \frac{(\beta_x - 1)}{\beta_x}$$

 $\beta_{10} > 200$ corresponds to filtration efficiency of 99,5%.

Comparison of the B-Value and Efficiency E (each related to a defined Particle Size)

ß-value	Filtration Efficiency E
1	0,00 %
2	50,00 %
10	90,00 %
25	96,00 %
50	98,00 %
75	98,67 %
100	99,00 %
200	99,50 %
1000	99,90 %
9999	99,99 %

The **dirt-hold capacity** (DHC) shows how much solid dirt a filter element can hold before it has to be replaced. The dirt-hold capacity is therefore the most important parameter in the filter service life.

The **differential pressure** (Δp) is another important criterion for the configuration of the filter. Ensure that the size of the filter element is chosen according to the calculation guideline by STALIFF

To guarantee optimum filtration, the β -value, the dirt-hold capacity (DHC) and the differential pressure (Δp) must be carefully matched.

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Filtration Terminology

The B-value as per ISO 16889 is the relevant characteristic value for filtration efficiency. The β -value is the ratio of particles before $(N_{up \, x})$ and after $(N_{down \, x})$ the filter related to a specific particle size x

$$\beta_x = \frac{N_{up x}}{N_{down x}}$$
 (see page 19)

Cavitation Damage

Cavitation is defined to be the cavity formation in liquids. Cavitation occurs if the local static pressure of a liquid drops below a critical value. This critical value usually corresponds to the vapour pressure of the liquid. Critical effects of cavitation are:

- Cavitation wear
- Undissolved gas in the hydraulic system
- Loud high-frequency noises
- · Local high temperatures in the liquid
- · Changes to the resistance characteristics of the hydraulic resistance

Cleanliness Level

The cleanliness level of a hydraulic fluid is defined by the number of solid particles per ml of fluid. The number of particles is usually measured with an automatic particle counter. The cleanliness level is determined by a class code created by counting the number of particles of different sizes.

Particle counting as well as the coding of the cleanliness class for hydraulic oils are described in the ISO 4406 (1999) standard. Beside the ISO 4406 (1999), NAS 1638 (1964) and SAE AS4059 Rev. D (2001) are also still common.

Clogging Indicator

The clogging indicator signalises a specific pressure level where the soiled filter element should be replaced. They work with differential pressure (Δp) or back pressure. Clogging indicators are available in visual, electrical and visual / electrical versions. While it is the responsibility of the installation or maintenance personnel to check the degree of clogging of the filter element with visual clogging indicators, a signal contact (switch) can be connected to the machine controller with an electrical or visual / electrical clogging indicator.

Collapse Pressure

The permissible collapse pressure according to ISO 2941 is understood to be the pressure difference that a filter element can withstand with the stipulated direction of flow. Exceeding the collapse pressure results in the destruction of the filter element.

Depth Filter

Impurities penetrate into the filter fabric and are retained by the structure of the filter fabric. Mainly cellulose and inorganic glass fibre media are used in hydraulic filters. For special applications, Plastic Media (high-strength) and Stainless Fibre media are also used. The design of the depth filter combines the highest micron rating with a high dirt retention capacity. Due to the fleece-like structure of depth filters, particles are not only separated on the surface of the filter material, but they can penetrate into the filter material, which leads to a considerable increase of the effective filter area. In contrast to sieves, there are no holes in fleece, rather they practically consist of labyrinths in which the particles are trapped. Hence, there is no sharply defined screening, rather a wide range of particles are trapped.

Differential Pressure

The differential pressure (Δp) is defined as the pressure difference between the filter inlet and the filter outlet, or alternatively in front of and behind the filter element.

Exceeding the maximum permissible pressure differential leads to the destruction of the filter element.

An integrated bypass valve in the filter prevents destruction of the filter element by opening if the differential pressure (Δp) is too high. Then the oil is passed unfiltered into the hydraulic circuit. For applications in which no unfiltered oil is allowed to pass into the hydraulic circuit, there is the possibility of using filters without bypass valves with filter elements that can withstand a high differential pressure (Δp). The filter elements must be designed such that they can withstand the maximum expected differential pressure (Δp).

Dirt-Hold Capacity (DHC)

The dirt-hold capacity (DHC) shows how much solid dirt a filter element can hold. It is measured in the multipass test according to ISO 16889.

Filter

A filter (hydraulic filter) has the job of keeping solids out of a liquid (oil). A filter is usually made of an filter housing and a filter element.

Filter Area

The filter area is the size of the theoretically spread-out filter element. The larger the filter area, the lower the flow resistance of the filter element. Simultaneously, the dirt-hold capacity (DHC) increases. The following applies in general: the larger the filter area, the longer the service life of the element. Basically the filter area can be enlarged by the number of pleats.

Filter Cake

A filter cake is made up of the particles trapped on the surface of a filter medium.

Essentially depends on the following factors: specific flow rate, cleanliness level, amount of contamination, the maximum pressure setting and the required filter service life.

Filter Element

The filter element is located in the filter housing and performs the actual filtering task.

Filtration Efficiency

Filtration efficiency E is a measure of the effectiveness of a filter element for separating solid particles. It is given in percent.

Filter Housing

Depending on the application, the filter housing is built into the pressure or Return-Line and must be designed for the specific operating or system pressure and the flow rate. The filter element is located in the filter housing. Depending on the application, the filter housing may be equipped with a bypass valve, a reversing valve, a clogging indicator and other options.

Filter Material

The choice of the right filter material is dependent on different criteria. Amongst others, this includes the type of application, the filter function, degree of contamination or alternatively the required dirt-hold capacity (DHC) as well as requirements of chemical or physical resistance. The following list gives you an overview of how these filter materials differ with regard to specific properties:

Inorganic Glass Fibre

Inorganic Glass Fibre media are among the most important materials in modern filtration. During production, selected fibres (1 mm ... 5 mm long and with a diameter of 3 μm ... 10 μm) are processed into a specific mix. The manufacturing process is very similar to paper production. The fibres are bound with a resin and impregnated. The benefit compared to cellulose paper is a fibre structure that is considerably more homogenous and consequently has larger open pored surfaces. As a result, lower flow resistance is achieved.

- Based on Glass Fibres with acrylic or epoxy resin binding
- · High retention and dirt-hold capacity (DHC)
- · Excellent separation efficiency of the finest particles due to the three-dimensional labyrinth structure with deepth filtration
- Outstanding price / performance ratio

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Filter Material (Continuation)

Polvester

- 100% Polyester Fibres with thermal bonding
- · High pressure differential resistance
- Good chemical resistance
- · High separation efficiency of the finest particles
- Tear-proof structure

Cellulose

- Filter material made of Cellulose Fibres with special impregnation
- Variants with the lowest price with good dirt retention capacity
- · Not suitable for water based media

Stainless Fibre

- Sintered Stainless Fibres with three-dimensional labyrinth structure for depth filtration
- · Low flow resistance with high dirt-hold capacity
- Excellent chemical and thermal resistance

Stainless Mesh

Filter elements with a Metal Wire Mesh are often used as a conditionally reusable solution in protection filters, Suction-Line Filters or Return-Line Filters. Depending on the requirements (micron rating, pressure, dynamics) different types of mesh are used like twill, linen, or also Dutch weave.

- Wire mesh fabric made of material 1.4301 or 1.4305 for surface filtration (other material on request)
- · Low flow resistance due to large-pored screening surface
- Excellent chemical and thermal resistance
- Cleanable under special conditions

Flow Rate

This is the amount of fluid that flows past a specific cross-section per unit time. It is given in litres per minute (I/min) or gallons per minute (US GPM).

Hydraulic Fluid

A pressure liquid is defined to be a fluid used in hydraulic and lubrication systems. According to ISO 6743, the fluids are divided into mineral oil based, flame resistant and biodegredable liquids.

Micron Rating

Regarding micron rating, we must differentiate between the filter materials that are used. To define the micron rating for Inorganic Glass Fibre filter elements, the ß-value as per ISO 16889 is commonly used.

Absolute and Nominal micron rating

Micron rating is the size of particles which are filtered out by filters at a certain efficiency. When this efficiency is at least 99.5%, we speak about absolute micron rating/filtration.

Nominal micron rating is just a commercial trick for all efficiencies lower than 99.5%, meaning that for the same micron rating (for ex. 5 μ m) in the case of nominal rating, not all particles will be captured in the filter as in the case of absolute micron rating.

Multipass Test

The Multipass Test evaluates the performance of a filter element. Standardised in ISO 16889-2008, this test allows comparable and repeatable results of the elements performance. If a normal filter element life is between a few weeks up to several months, this test reduces this life down to 90 minutes. The element is subjected to a fluid that a large amount of a special test dust ISO MTD contains. Results are given for the β -ratio, dirt-hold capacity (DHC) and differential pressure. It is used for designing hydraulic circuits, developing new filter materials and comparison of different filter elements.

See also page 18 and page 19 to get more information about the outcome data. In former time this test was also known as the Multipass Test ISO 4572.

Nominal Flow Rate

The nominal flow rate describes the flow rate or the volumetric flow rate for which the respective filter has been designed. It is usually given in litres per minute (I/min) or US Gallons per minute (US GPM) and is an important parameter in the filter design.

Nominal Pressure

Pressure for which the filter is designed and which it can be identified with.

Operating Pressure / System Pressure

Maximum pressure with which the filter may be used.

Surface Filter

Impurities are separated on the surface of the filter element. Surface filters are designed to have uniform pores (gaps), therefore they can almost completely retain specific particle sizes. Surface filters are made of Metal Wire Mesh or Cellulose materials.

Other surface filters are metal-edge filters.

Valve

Bypass Valve

A bypass valve is a valve that is integrated in a filter or filter element and allows the oil to bypass the contaminated filter element if a defined pressure differential is exceeded. Bypass valves are used to protect the filter element.

Non-Return Valve

It prevents the continuation line from draining while the filter element is changed.

Reverse Flow Valve

It is used to bypass the filter element for reversible oil flow so that the fluid does not pass through the filter element in the reverse direction.

Multi-Function Valve

A combination of bypass, reverse flow and non-return valve.

Viscosit

The viscosity of a fluid describes the flow behavior of a liquid. There are the kinematic viscosity υ with the unit "m²/s" and the dynamic viscosity η with the unit "Ns/m²". In the field of filtration, in the design of filters the kinematic viscosity is required for calculating. The kinematic viscosity υ can also be calculated with the dynamic viscosity η and density ρ :

$$\upsilon = \frac{\eta}{\rho}$$

The kinematic viscosity unit is "mm²/s", before it was called centistokes or Stokes (1 cSt = 1 mm²/s = 10^6 m²/s). The unit of dynamic viscosity is "Ns/m², it was previously reported in Poise (10 P = 1 Ns/m² = 1 Pa s).

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Choice of Filters

Choice of a Suitable Micron Rating

Generally, the type of components incorporated in the hydraulic system will determine the micron rating required. It has been clearly demonstrated that system components will operate reliably for years if a specific minimum oil cleanliness grade is maintained. Frequently the choice will be determined by the most sensitive component in the system.

a) Operating Filter

To get a rough, first rating of what filter is needed to assure a certain oil cleanness grade please have a look at page 19.

Apart from the specific flow rate (I/min per cm² of filter area), other factors such as operating environment and condition of seals and breathers can have an effect on the cleanliness grade which can actually be achieved.

b) Protective Filter

Occasionally, protective filters are fitted downstream of major components, e.g. the pump, to collect the debris in case of a catastrophic failure. This avoids total stripping and flushing of the system. For economic reasons, protective filters are normally one grade coarser than the operating filters since they do not significantly contribute to the cleaning of the system and this extends filter service intervals.

Choice of the Optimum Filter

In selecting the filter, the following information must be considered:

- Maximum flow volume (Q_{max}) through the filter including surge flows
- Kinematic viscosity (v) of the fluid in mm²/s (cSt) at cold start temperature and operating temperature
- Density ρ of the fluid
- Micron rating (μm): see table on page 19
- · Filter material

The aim is to choose a filter whose total differential pressure (Δp) is not higher than $\Delta p_{max}=1,0$ bar (for Pressure Filters) or $\Delta p_{max}=0,5$ bar (for Return-Line filters), in a clean state at the normal operating temperature. These values have been proven in practice to give the optimum service life for the element.

The nominal flow volume of the filter is the obvious reference value for pre-selection and this should be larger than the flow to be filtered.

$$Q_{nom} > Q_{max}$$

Calculations based on the filter data will verify whether the pre-selected filter meets the requirements, at operating temperatures:

$$\Delta p_{max} \le 1.0$$
 bar (for Pressure Filter)
 $\Delta p_{max} \le 0.5$ bar (for Return-Line Filter)

The total differential pressure of the assembly Δp_{Assy} is calculated by adding the differential pressure of the housing Δp_{Hous} and that of the element $\Delta p_{Elem}.$ Both the kinematic viscosity and density of the operating medium should be considered for the selection, as the flow curves on the pages following have been determined with a kinematic viscosity of $\upsilon=30$ cSt and a density of $\rho=0.86$ kg/dm³. The values of the pressure drops for the Δp_{Hous} and the Δp_{Elem} can be read from the flow curves on the pages following. The values for the kinematic viscosity in cSt and the density in kg/dm³ should be inserted into the following formula:

$$\Delta p_{\text{Assy}} = \frac{\rho}{0.86} \cdot \Delta p_{\text{Hous}} + \frac{\rho}{0.86} \cdot \frac{\upsilon}{30} \cdot \Delta p_{\text{Elem}}$$

The filter size is suitable if the $\Delta p_{Assy}\!<\Delta p_{max}$

If the calculated Δp_{Assy} is higher than Δp_{max} select the next larger filter size and re-calculate until a satisfactory solution is found.

The following two examples explain and help to understand the procedure of calculating a filter.

Examples of Calculation

Example 1: Selection Pressure Filter

System Information: A Pressure Filter with an Inorganic Glass Fibre element is required immediately after the pump. The system has standard components and is operating at pressures up to 200 bar. The filter shall be fitted with a bypass valve and a visual cloquing indicator.

For better understanding only the calculation at the upper temperature is carried out.

Data given: Q_{max}: 100 l/min

 Oil type:
 ISO 68

 Temperature max.:
 +50°C

 Viscosity υ_{operating}:
 44 mm²/s

 Density ρ:
 0,882 kg/dm³

Micron rating: 10 μm (see table on page 19)

First Step

Pre-selection of the size: SF-045, $Q_{nominal} = 160 \text{ I/min} > Q_{max}$

Pressure drop values (at viscosity of 30 mm²/s) from the flow characteristics:

 $\begin{array}{lll} \Delta p_{Hous} = 0{,}15 \; bar & (SF-045 \; ..., see page \; 40) \\ \Delta p_{Elem} = 0{,}77 \; bar & (SE-045-G \; -10- \; B/4, see page \; 40) \end{array}$

Determination of the correction factor:

$$\Delta p_{Assy} = \frac{0.882}{0.86} \cdot 0.15 \text{ bar } + \frac{0.882}{0.86} \cdot \frac{44}{30} \cdot 0.77 \text{ bar}$$

$$\Delta p_{Assy} = 1.31 \text{ bar} \ge \Delta p_{max} = 1.0 \text{ bar}$$

Since the actual pressure drop is larger than the allowed pressure drop, a larger filter has to be chosen.

Second Step

Selection of the next larger filter size: SF-070, $Q_{nominal} = 240 \text{ I/min} > Q_{max}$

$$\begin{array}{lll} \Delta p_{Hous} = 0{,}15 \; bar & (SF-070 \; ..., see \; page \; 40) \\ \Delta p_{Elem} = 0{,}45 \; bar & (SE-070 - G-10 - B/4, see \; page \; 40) \end{array}$$

$$\Delta p_{Assy} = \frac{0.882}{0.86} \cdot 0.15 \text{ bar } + \frac{0.882}{0.86} \cdot \frac{44}{30} \cdot 0.45 \text{ bar}$$

$$\Delta p_{Assy} = 0.83 \text{ bar} \le \Delta p_{max} = 1.0 \text{ bar}$$

In a clean state, this filter fulfills the requirements and is suitable for the application. The correct filter designation would be **SF-070-G-10-B-T-G20-B-V**.

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

sales@oilsolutions.com.au

Catalogue 9 • Edition 04/2020

Example 2: Selection Return-Line Filter

System Information: A Return-Line filter with a Cellulose element with a micron rating of 10 μm is required to clean the oil. No clogging indicator is required.

Please note: If the system incorporates either accumulators or cylinders, the return flow can dramatically exceed pump flow and the maximum surge flow should be the flow used to calculate the pressure drop through the filter.

Data given: Q_{max} : 100 l/min

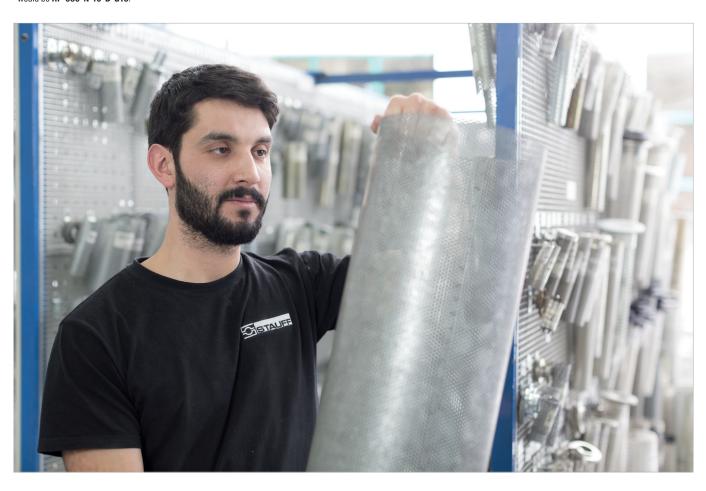
 $\begin{array}{ll} \mbox{Oil type:} & \mbox{ISO 68} \\ \mbox{Temperature max.:} & +60 \mbox{°C} \\ \mbox{Viscosity $\upsilon_{operating}$:} & 29 \mbox{ mm²/s} \\ \mbox{Density ρ:} & 0.882 \mbox{ kg/dm³} \\ \end{array}$

Micron rating: 10 μm (see table on page 19)

First Step

Pre-selection of the size: RF-030, $Q_{nominal} = 110 \text{ I/min} > Q_{max}$

Pressure drop values (at viscosity of 30 mm²/s) from the flow characteristics:


 $\begin{array}{lll} \Delta p_{Hous} = 0,\!30 \; bar & (RF\text{-}030 \; ..., \, see \; page \; 72) \\ \Delta p_{Elem} = 0,\!067 \; bar & (RE\text{-}030\text{-}N\text{-}10\text{-}B, \, see \; page \; 72) \end{array}$

Determination of the correction factor (see page 22):

$$\Delta p_{Assy} = \frac{0,882}{0,86} \cdot 0,30 \text{ bar } + \frac{0,882}{0,86} \cdot \frac{29}{30} \cdot 0,067 \text{ bar}$$

$$\Delta p_{Assy} = 0.37 \; bar \leq \Delta p_{max} = 0.5 \; bar$$

In a clean state, this filter fulfills the requirements and is suitable for the application. No further calculation is necessary. The correct filter designation would be RF-030-N-10-B-G16.

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

	Filter Elements	24 - 33
1000	Filter Material – Quality And Properties	26
tÎ	For Return-Line Filters	27
	For Pressure Filters	27
	For Spin-On-Filters	28
	For Suction Strainers	28
	Interchanging STAUFF Filter Elements	29
	Order Codes	
	Special Filter Element Solutions	30
	Checklist for the selection of filter housings	31
	Filter Elements For Single, Double and Automatic Filters	32 - 33

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils

The STAUFF 4PRO Glass Fibre Elements

The PLUS for customers:

- . Longer operating times through higher dirt holding capacity
- Improved energy efficiency through lower differential pressure
- \blacksquare Excellent β values and outstanding β stability

The 4Pro stands for 4 pros that characterise STAUFF glass fibre materials:

- proACTIVE
- proFESSIONAL
- proGRESSIVE
- proTECTION

Or simply: Fo(u)r Protection

In terms of the β value, STAUFF elements have always exhibited excellent performance. For those who take filtration seriously, there's no other valid approach – the measured values must hold up under any inspection. The elements cannot afford any vulnerabilities. The new generation of elements also have excellent dirt holding capacities. Values that users have been looking for. Values that make it possible for the user to extend operating times thereby providing significant reductions to purchasing costs for elements as well maintenance costs.

Protecting Filter Elements Against Direct Flow Impact

The sensitive filter bellows on filter elements are frequently prone to damage during transportation, storage and filter replacement work. In addition, large particles in the flow of fluid may harm the filter material.

STAUFF offers a solution: SE and RE series filter elements with protective sheath (only available for glass fibre elements). This is a thin, perforated plastic sheet that completely encases the pleats of the filter from the outside as well as making the element more stable. A further positive effect is that the volume of flow is distributed more evenly by the protective sheath, thus ensuring an efficient flow rate.

In its standard version, the foil is printed with the STAUFF 4PRO logo, eliminating any mix-up with other brands. Larger quantities can also be produced with a customised imprint on the sheath.

β value

Key evaluation criteria for filter elements using glass fibre technology are the retention rate (micron rating) the β value, the β stability, the dirt holding capacity and the initial pressure differential. These values are determined using the multipass test established by ISO 16889.

The designation for STAUFF elements typically includes a rating based on filter fineness.

Filter designation β value > 200 according to ISO 4406	$eta_{(c)} > 200$ ISO 11171	$\beta_{\text{(c)}} > 1000$ ISO 11171
03	4,0 µm _(c)	4,5 μm _(c)
05	5,0 μm _(c)	6,0 μm _(c)
10	8,8 μm _(c)	11,0 μm _(c)
20	21,0 μm _(c)	23,0 µm _(c)

Filter Material – Quality And Properties

The choice of the right filter material is dependent on different criteria. Among others, this includes the type of application, the filter function, degree of contamination or alternatively the required dirt-hold capacity as well as requirements of chemical or physical resistance. Inorganic Glass Fibre, Polyester, Cellulose, Stainless Fibre Material and Stainless Steel Wire Mesh are used for hydraulic applications.

The following list gives you an overview of how these five filter materials differ with regard to specific properties:

Inorganic Glass Fibre

- Inorganic Glass Fibre based on synthetic fibres with acrylic resin binding
- Large dirt-hold capacity
- Excellent separation efficiency of the finest particles due to the three-dimensional labyrinth structure with deep-bed filtration
- Outstanding price/performance ratio

Micron rating

■ 3 ... 25 µm (alternative micron ratings on request)

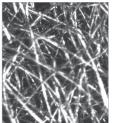
26

Polyester Fibre

- 100% Polyester Fibres with thermal bonding
- High pressure differential resistance
- Good chemical resistance
- High separation efficiency of the finest particle
- Tear-proof structure

Micron rating

■ 3 ... 25 µm (alternative micron ratings on request)



Cellulose Fibre

- Filter material made of Cellulose Fibres with special impregnation
- Variants with lowest price with good dirt-hold capacity
- Not suitable for water based fluids

Micron rating

■ 10 ... 50 µm (alternative micron ratings on request)

Stainless Fibre

- Sintered Stainless Fibres with three-dimensional labyrinth structure for depth filtration
- · Low flow resistance with high dirt-hold capacity
- Excellent chemical and thermal resistance

Micron rating

■ 3 ... 25 µm (alternative micron ratings on request)

Stainless Mesh

- Wire Mesh fabric made of material 1.4301 or 1.4305 for surface (other material on request)
- Type of weave: square weave or Dutch weave
- Low flow resistance due to large-pored screening surface
- Excellent chemical and thermal resistance

Micron rating

- 10 ... 1000 μm (alternative micron ratings on request)

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils

Replacement Filter Element for Return-Line Filters

Filter media

- Inorganic Glass Fibre
- Polyester Fibre
- Cellulose Fibre
- Stainless Fibre
- Stainless Mesh

Micron rating

• see on page 26 Filter Materials

$max. \ \Delta p*collapse$

■ 10 ... 25 bar / 145 ... 362 PSI

Sealing Material

- NBR (Buna-N®)
- FKM (Viton®)
- EPDM

Bypass

■ 1 ... 7 bar / 0 ... 101 PSI

End cap

Plastic / Steel / Stainless Steel (alternative End caps on request)

Note: * Collapse / burst resistance as per ISO 2941.

Replacement Filter Element for Pressure Filters

Filter media

- Inorganic Glass Fibre
- Polyester Fibre
- Cellulose Fibre
- Stainless Fibre
- Stainless Mesh

Micron rating

• see on page 26 Filter Materials

$max. \ \Delta p*collapse$

■ 10 ... 210 bar / 145 ... 3045 PSI

Sealing Material

- NBR (Buna-N®)
- FKM (Viton®)
- EPDM

End cap

• Steel / Stainless Steel / Aluminium (alternative End caps on request)

Note: * Collapse / burst resistance as per ISO 2941.

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

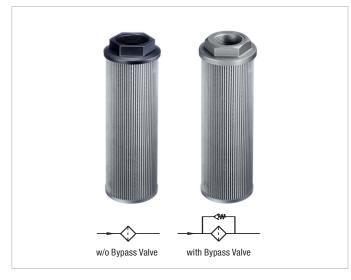
Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils

Replacement Filter Element for Spin-On-Filters (see on Page 168 - 173)

max. ∆p*collapse

■ 5 ... 10 bar / 72 ... 145 PSI

Sealing Material


■ NBR (Buna-N®)

Connection Thread

■ BSP / UNF / NPT

Note: * Collapse / burst resistance as per ISO 2941.

Replacement Filter Element for Suction Strainers

Filter media

Stainless Mesh

Micron rating

■ 60, 125, 250 µm

Flow Rate

■ 12 - 400 I/min / 3.1 - 104 US GPM

Bypass

■ 0,2 bar / 2.9 PSI

End cap

Aluminium / Plastic

Connection Thread

■ BSP / NPT

Note: * Collapse / burst resistance as per ISO 2941.

For details, please see Catalogue No. 10 - Hydraulic Accessories.

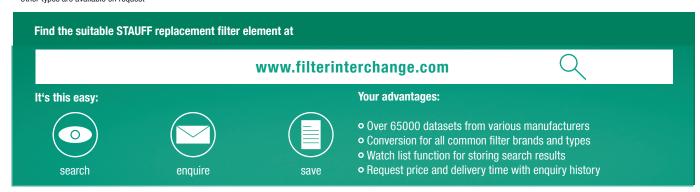
1800-OILSOL

https://oilsolutions.com.au/

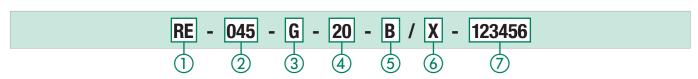
Interchanging STAUFF Filter Elements

As well as original Filter Elements for our own filter housings, STAUFF also provides access to a comprehensive range of Replacement Filter Elements. They match the quality and can be installed in the products of for example:

- Argo-Hytos
- Donaldson
- Eppensteiner Bosch Rexroth
- Fairey Arlon
- Hydac
- Mahle
- Internormen
- Pall
- Parker
- Other types are available on request


STAUFF offers many options for filter conversion, design and calculation and supports interested parties and customers with the design of efficient solutions:

- Online filter search with more than 65000 data sets under www.filterinterchange.com
- Offline filter database with deposited measurements, filter surfaces and drawings
- Filter selection software for easy filter design and calculation


Thanks to their excellent dirt-hold capacity, all of the filter products supplied by STAUFF have an impressive long service life and high β value stability:

- Inorganic glass fibre, filter paper, stainless fibre (micron ratings between 3 μm and 25 μm respectively) as well as stainless mesh (micron ratings between 10 μm and 1000 μm)
- Maximum differential pressure depending on filter media and application for the options 16 bar / 232 PSI, 30 bar / 435 PSI or 210 bar / 3000 PSI.

Your local STAUFF Distributor will assist you interchanging to STAUFF elements.

Order Codes

1 Туре	
Series Filter E	lement
Argo-Hytos High Pressure Filter Element	SD
Argo-Hytos Medium Pressure Filter Element	MD
Argo-Hytos Return-Line Filter Element	RD
Argo-Hytos Suction-Line Filter Element	AD
Eppensteiner Bosch Rexroth High Pressure Filter Elem	ent SS
Eppensteiner Bosch Rexroth Return-Line Filter Elemen	nt RS
Eppensteiner Bosch Rexroth Low Pressure Filter Elem	ent LS
Fairey Arlon High Pressure Filter Element	SA
Fairey Arlon Return-Line Filter Element	RA
Hydac High Pressure Filter Element	SE
Hydac Return-Line Filter Element	RE
Mahle High Pressure Filter Element	SL
Mahle Low Pressure Filter Element	ML
Mahle Return-Line Filter Element	RL
Internormen High Pressure Filter Element	SN
Internormen Return-Line Filter Element	RN
Pall High Pressure Filter Element	SP
Pall Return-Line Filter Element	RP
Medium Pressure Filter Element according to standa	rd NL
Return-Line Filter Element according to standard	l NR
Spin-On Filter Element	SFC
Special Element STAUFF	SXX

Note: Other series on request

2 Nominal Size

Depending on the nominal flow or element length

(3) Filter Material and Pressure Setting

i iller maleriai anu i ressure settini	J
Stainless Fibre, high collapse pressure	A, M
Stainless Wire mesh, low collapse pressure	B, S
Polyester Fibre, high collapse pressure	C
Filter Paper, low collapse pressure	D, K, L, N
Inorganic Glass Fibre, low collapse pressure	E, G
Inorganic Glass Fibre, high collapse pressure	F, H
Stainless Wire Mesh, high collapse pressure	R, T, W

4 Micron Rating

Stainless wire westi	
10 μm	10
20 μm	20
25 μm	25
40 μm	40
50 μm	50
60 μm	60
80 μm	80
100 μm	100
125 μm	125
150 μm	150
200 μm	200
500 μm	500
1000 μm	1000

Stainless Stainless Fibre	
3 μm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
Filter names	

Filter paper	
10 μm	10
20 μm	20
50 μm	50

4 Micron Rating Inorganic Glass Fibre

3 μm	03
5 μm	05
10 μm	10
15 μm	15
20 μm	20
25 μm	25
Polyester Fibre	
3 μm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25

Note: Other micron ratings on request

(5) Sealing Material

NBR (Buna-N®)	В
FKM (Viton®)	۷
EPDM	E
Mate. Other applies materials as secured	

Note: Other sealing materials on request.

(6) Design Code

Only for information

7 STAUFF Special Number

If element varies from the standard type

Special Filter Element Solutions

Custom-designed Filter element solutions in addition to the Original-STAUFF-Filtartion Technology range according to customers specifications or based on STAUFF developments.

If you have similar requirements please contact STAUFF.

Special Suction Strainer

1800-OILSOL

https://oilsolutions.com.au/

Checklist for the selection of filter housings

Please use the following Checklist as a guideline when preparing an enquiry for the selection of filter housings. Scan or copy the page from the catalogue, print and com-

plete it with as much information as possible, before sending it by email or fax to the closest STAUFF branch office.

If possible, please also let us know the quantities required,

and if the enquiry is for a one-time or recurring demand. We look forward to hearing from you, and are always available for consultation, when required.

	Information on the fluid in use							
Type of fluid	illiorniation on the hulu ill	Brand		ISO designation				
Fluid viscosity		Diana	mm²/sec	cSt				
	00	0.5	111117586			la consuma ann dition		
Fluid temperature	°C	°F		In cold condition		In warm condition		
	Information on the filter ho	Information on the filter housing						
Position in the hydraulic system	Suction line Pressure line			Return line	Return line			
Operating pressure			bar	PSI				
Nominal flow			I/min	US GPM				
Valve	No, not required							
	Yes, the following type:		Bypass valve	Non-return valve	Reverse flow valve	Multi-function valve		
Clogging indicator	No, not required							
	Yes, the following type:		Visual	Electrical	Visual-electrical			
Connection type and size								
Sealing material	NBR (Buna®)	FKM (Vite	on®)	Other				
Information on the filter element								
Filter media	Inorganic Glass Fibre		Polyester Fibre	Cellulose Fibre	Stainless Fibre	Stainless Mesh		
Micron rating		μm						
Cleanliness level								
Information on the	(to ISO 4406)							
application								
Information on the ambient conditions								
Additional								
information and requirements								

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

STAUFF

Replacement Filter Elements for Single, Double and Automatic Filters

Screw-In and Plug-In Elements ■ Type SFK

We produce high-quality Screw-In and Plug-In Elements in Stainless Steel design or in Plastic design. They fit into the most common single, double and automatic filters.

Length

■ 220 mm ... 750 mm / 8.66 in ... 29.53 in

Diameter

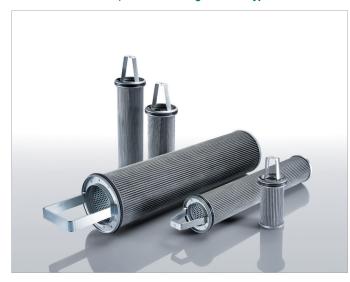
■ 30 mm / 1.18 in

Filter media

Stainless Mesh

Micron rating

■ 10 ... 200 µm (alternative micron ratings on request)


End cap

Stainless Steel / Plastic

Application

• For lubricating oils, heavy fuels, water, chemicals and cooling lubricants

Star-Pleated Elements, Basket and Ring Sieves ■ Types SBS and SBK

We deliver high-quality Star- Pleated Elements, Basket and Ring Sieves in Stainless Steel design with particularly pleated filter media which offer a very good filtrate quality and aw long durability.

Length

• 95 mm ... 390 mm / 3.74 in ... 15.35 in

Diameter

• 65 mm ... 85 mm / 2.56 in ... 3.35 in

Filter media

Stainless Mesh

Micron rating

■ 10 ... 200 µm (alternative micron ratings on request)

End cap

Stainless Steel

Application

Heavy Fuel Elements ■ Type SFK-439

STAUFF Heavy Fuel Elements separate particles from the fluid flow as the last filtration step before direct injection to the engine room / combustor.

Length

439 mm / 17.28 in

Diameter

■ 48 mm / 1.89 in

Filter media

Stainless Mesh

Micron rating

6 μm or 10 μm

End cap

Stainless Steel

Application

 Separation of particles from the fluid flow as the last filtration step before direct injection to the engine room / combustor.

Replacement Filter Elements for Single, Double and Automatic Filters

Paper, Fibreglass and Polyester Elements ■ Type SBS-124

Due to the pleated design of STAUFF Paper Elements, they can offer a large filter area in a small place and with a long durability. The cover made of Polyester allows a safe treatment during the installation and the demounting without damaging the filter media.

enath.

= 254 mm, 500 mm or 750 mm / 10.00 in , 19.69 in oder 29.53 in (alternative lengths on request)

Diameter

■ 124 mm / 4.88 in

Filter media

• Paper, Fibreglass and Polyester (Stainless Mesh on request)

Micron rating

• 10 μm or 50 μm (alternative micron ratings on request)

End cap

• Steel, zinc plated or Stainless Steel

Application

Bypass and flushing filter for automatic filters and double filters in the field of lubricating oil

Plastic Elements ■ Types SFK-320 and SFK-445

STAUFF Plastic Elements have a special cloth and a special format which ensure the safety and the optimal protection of the motors. The molded end caps allow a quick installation and demounting as they can be easily connected.

Length

■ 320 mm or 445 mm / 12.59 in oder 17.52 in

Diameter

■ 19 mm ... 33 mm / 0.75 in ... 1.29 in

Filter media

• Plastic (Stainless Mesh on request)

Micron rating

■ 25 µm or 31 µm

End cap

Plastic

Application

Pre-filter of motors

Multimantle Elements ■ Type SBM

Multimantle Elements in different types and sizes complete the STAUFF exchange program.

Length

■ 128 mm ... 723 mm / 5.03 in ... 28.46 in

Diameter

 \blacksquare 86 mm \dots 230 mm / 3.39 in \dots 9.05 in

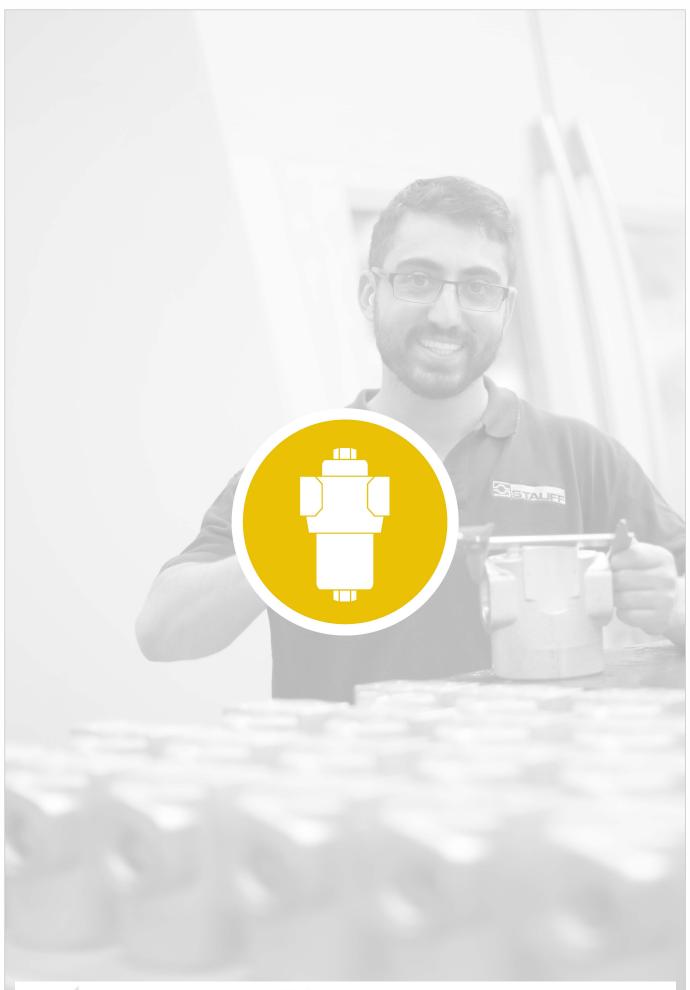
Filter media

Stainless Mesh

Micron rating


■ 10 µm ... 2000 µm

End cap


Aluminium

Application

 Multimantle filter elements are generally used in marine applications for filtering fuels and lubricants as well as water. The elements are also used in the processing industry for purifying water, oils, coolants and chemicals.

	Overview Pressure Filters SF / SF-TM / SFA / SFZ / SMPF		36		Medium Pressure Filters (Inline) SFA Max. 160 bar / 2320 PSI Max. 240 I/min / 70 US GPM	49 - 52
	High Pressure Filters (Inline) Max. 420 bar / 6000 PSI Max. 1135 I/min / 300 US GPM	SF	37 - 40	THERMAN	Technical Data / Dimensions	50 - 51
-	Technical Data / Dimensions		38 - 39		Order Code - Medium Pressure Filter	52
	Order Code - High Pressure Filter		40		Order Code - Filter Elements	52
	Order Code - Filter Elements		40		Valves (for SF / SF-TM / SFA / SFZ) HV	53
	High Pressure Filters (Top-mounted) Max. 315 bar / 4560 PSI Max. 1135 I/min / 300 US GPM	SF-TM	41 - 44		Clogging Indicators (for SF / SF-TM / SFA / SFZ)	54 - 55
	Technical Data / Dimensions				Flow Characteristics	56 - 58
			42 - 43		SF / SF-TM / SFA / SFZ	
	Order Code - High Pressure Filter		44		Medium Pressure Filters (Inline) SMPF Max. 110 bar / 1600 PSI Max. 90 l/min / 25 US GPM	59 - 62
	Order Code - Filter Elements		44	U	Technical Data / Dimensions	60 - 61
	High Pressure Filters (Sandwich) Max. 315 bar / 4560 PSI Max. 30 l/min / 8 US GPM	SFZ	45 - 48		Order Code - Medium Pressure Filter	62
	Technical Data / Dimensions		46 - 47		Order Code - Filter Elements	62
	Order Code - High Pressure Filter		48		Clogging Indicators	63
	Order Code - Filter Elements	der Code - Filter Elements			Flow Characteristics SMPF	64
					Checklist for the selection of filter housings	65

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Description

STAUFF Pressure Filters were designed for in-line mounting in hydraulic and lubrication systems. They are placed behind the pump and clean the hydraulic oil before it flows through down-stream components like valves, cylinders and so on. The main reason for pressure filtration is the protection of downstream, sensitive components. Eroded particles from the pump are immediately filtered out of the hydraulic oil. Besides working as a protection filter, Pressure Filters also help to maintain the required purity class.

Because it is placed right behind the pump, a Pressure Filter has to withstand the maximum system pressure. The filter element in the Pressure Filter also has to withstand the loads and is more intricately constructed, for example as a Return-Line filters element.

STAUFF Pressure Filters are available in many different sizes, connections and configurations.

Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

Valve

• Also available with bypass, reverse flow, non-return or multi-function valve

Cloqqing Indicator

• On request with visual, electrical or visual-electrical differential pressure indicator

Type SF

- · High Pressure Filter designed for in-line assembly
- Threaded mounting holes on top and fluid ports on side of head
- Also available as toploader, with bowl in two-part style
- Operating pressure: max. 420 bar / 6000 PSI
- Nominal flow rate: max. 1135 I/min / 300 US GPM
- Materials: Filter head: Spheroidal Graphite Cast Iron,
 Filter bowl: Cold Drawn Steel
- Connections: option of BSP, NPT, SAE thread or

SAE flange (ISO 6162-1/2)

Type SFA

- Medium Pressure Filter designed for in-line assembly
- Threaded mounting holes on top and fluid ports on side of head
- Low weight and compact design
- Operating pressure: max. 160 bar / 2320 PSI
 Nominal flow rate: max. 240 l/min / 70 US GPM
 Materials: Filter head: Cast Aluminium, Filter howl: Aluminium
- Connections: option of BSP, NPT, SAE-thread or

SAE flange (ISO 6162-1)

Type SF-TN

- High Pressure Filter designed for manifold mounting
- Mounting holes and fluid ports on top of head
- Also available as toploader, with bowl in two-part style
- Operating pressure: max. 315 bar / 4560 PSI
- Nominal flow rate: max. 1135 l/min / 300 US GPM
 Materials: Filter head: Spheroidal Graphite Ca
 - Filter head: Spheroidal Graphite Cast Iron or rather Free Cutting Steel, Filter bowl: Cold Drawn Steel

Type SMPF

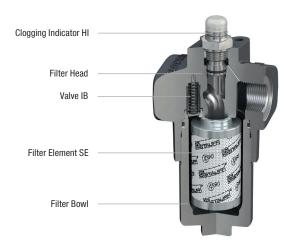
Medium Pressure Filter designed for in-line assembly

Operating pressure: max. 110 bar / 1600 PSI
 Nominal flow rate: max. 90 l/min / 25 US GPM
 Materials: Filter head and bowl: Aluminium

Connections: BSP, SAE-thread

Tyne SF7

- High Pressure Filter designed for sandwich plate mounting
- Available as right or left version
- Operating pressure: max. 315 bar / 4560 PSI
 Nominal flow rate: max. 30 l/min / 8 US GPM
- Materials: Filter head: Free Cutting Steel,
 Filter bowl: Cold Drawn Steel



1800-OILSOL 1800-645765 https://oilsolutions.com.au/

High Pressure Filters • Type SF

Product Description

STAUFF SF series High Pressure Filters are designed for in-line hydraulic applications, with a maximum operating pressure of 420 bar / 6000 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contaminant removal is assured. The high dirt-hold capacity of the elements ensures long service life and, as a result, reduced maintenance costs.

Technical Data

Construction

• Designed for in-line assembly, with threaded mounting holes on top of the head.

Materials

Spheroidal Graphite Cast Iron Filter head:

Filter bowl: Cold Drawn Steel NBR (Buna-N®) • 0-rings: FKM (Viton®)

EPDM (Ethylene-Propylene-Diene-Monomer-Rubber)

PTFE (Polytetrafluoroethylene) Support ring:

Port Connections

- BSP
- NPT
- SAE 0-ring thread
- SAE 3000 PSI (Code 61) flange
- SAE 6000 PSI (Code 62) flange

Other port connections available on request.

Operating Pressure

Max. 420 bar / 6000 PSI

Burst Pressure

Min. 1260 bar / 18275 PSI

Temperature Range

■ -10 °C ... +100 °C / +14 °F ... +212 °F

Filter Elements

• Specifications see page 40

Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

Valves

Allows unfiltered oil to bypass the contaminated element Bypass valve:

once the opening pressure has been reached, a differential pressure of $6^{+0.5}$ bar / $87^{+7.25}$ PSI Δp is the standard setting.

Other settings available upon request.

· Reverse flow valve: Allows reverse flow through the filter head without backflushing

the element.

Prevents draining of the delivery line during element change. Non-return valve:

Multi-function

Opening pressure 6 $^{+0,5}$ bar / 87 $^{+7.25}$ PSI valve:

Bypass, reverse flow capability and non-return valve

combined in one valve.

Clogging Indicators

Standard actuating

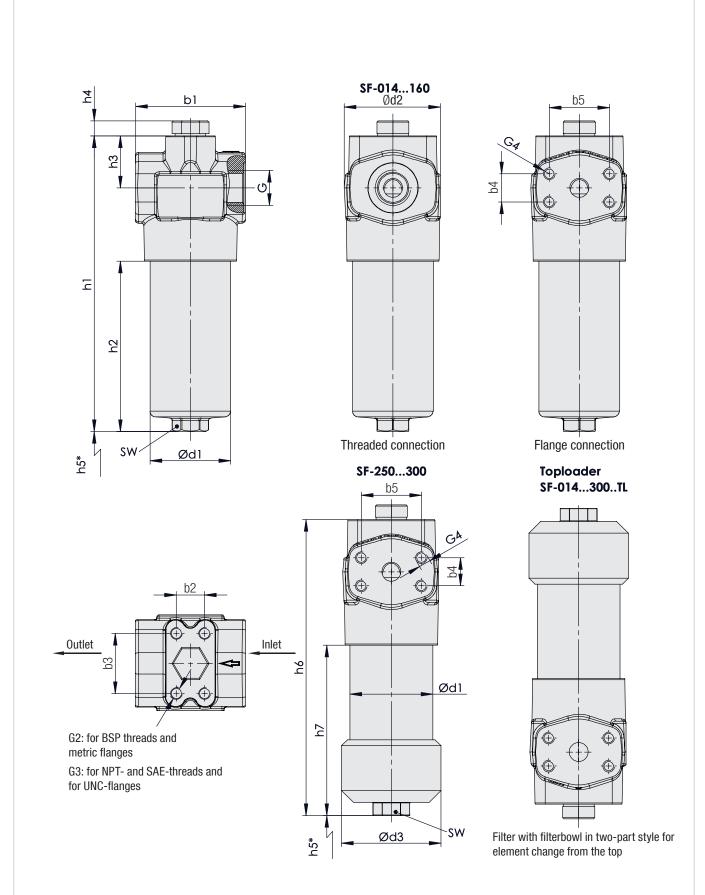
 $5_{-0.5}$ bar / $72.5_{-7.25}$ PSI Δp pressure:

Other actuating pressure settings are available upon request.

Available indicators: Visual

Visual-electrical (24 V DC, 110 V AC, 230 V AC versions)

Double Visual-electrical (24 V DC)



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

High Pressure Filters • Type SF

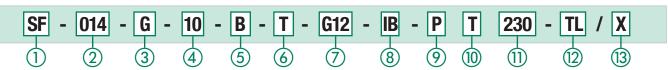
^{*} recommended space for element change

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

High Pressure Filters • Type SF

Thread	Filter Size SF										
Connection G	014	030	045	070	125	090	130	160	250	300	
BSP	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	
NPT	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	
SAE 0-ring Thread	1-1/16-12	1-1/16-12	1-5/8-12	1-5/8-12	1-5/8-12	1-7/8-12	1-7/8-12	1-7/8-12	1-7/8-12	1-7/8-12	
SAE Flange 3000 PSI	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	
SAE Flange 6000 PSI	3/4	3/4	1-1/4	1-1/4	1-1/4	1-1/2	1-1/2	1-1/2	1-1/2	1-1/2	
Weight (kg/lbs)	5	5,9	10,3	12	-	26,4	30,2	34,9	-	-	
Bowl in One-Part Style	11	13	22.7	26.5	-	58.2	66.6	76,9	-	-	
Weight (kg/lbs)	5,6	6,6	12,2	13,7	20	31,4	-	38,7	48,4	56,7	
Bowl in Two-Part Style	12.3	14.6	26.9	30.2	44.1	69.2	-	85.3	106.7	125	

		Filter Size SF									
Dimei	nsions (mm/in)	014	030	045	070	125	090	130	160	250	300
		93	93	126	126	126	160	160	160	160	160
b1		3.66	3.66	4.96	4.96	4.96	6.29	6.29	6.29	6.29	6.29
		81	81	120	120	120	156	156	156	156	156
d2		3.19	3.19	4.72	4.72	4.72	6.14	6.14	6.14	6.14	6.14
		44	44	44,5	44,5	44,5	66,5	66,5	66,5	66,5	66,5
h3		1.73	1.73	1.75	1.75	1.75	2.62	2.62	2.62	2.62	2.62
		12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5
h4		.49	.49	.49	.49	.49	.49	.49	.49	.49	.49
		68	68	95	95	-	130	130	130	130	130
.ye	d1	2.68	2.68	3.74	3.74	-	5.12	5.12	5.12	5.12	5.12
with Filter Bowl in One-Part Style Type SF		184	250	233,5	292	-	317,5	411	488,5	-	-
ra-	h1	7.24	9.84	9.19	11.51	-	12.5	16.18	19.23	-	-
┢		78	144	102,5	161,5	-	148	241,5	319	-	-
owi in Unit Type SF	h2	3.07	5.67	4.03	6.35	-	5.83	9.5	12.56	-	-
y w		100	170	140	200	-	190	290	360	-	-
_ E	100.	3.94	6.69	5.51	7.87	-	7.48	11,42	14.17	-	-
liei	h5	85	85	120	120	-	150	150	150	-	-
Ξ	min.	* 3.35	3.35	4.72	4.72	-	5.91	5.91	5.91	-	-
<u> </u>		27	27	32	32	-	36	36	36	36	36
	Hex	1.06	1.06	1.26	1.26	-	1.42	1.42	1.42	1.42	1.42
		70	70	101,6	101,6	101,6	133	-	133	133	133
with Filter Bowl in 1wo-Part Style Type SFTL	d1	2.76	2.76	4	4	4	5.24	-	5.24	5.24	5.24
101		84	84	115	115	115	155	-	155	155	155
<u>g</u>	d3	3.31	3.31	4.53	4.53	4.53	6.10	-	6.10	6.10	6.10
占		65	130	100	160	340	120	-	290	425	590
sowi III I we Iype SFTI	h5	2.56	5.12	3.94	6.30	13.39	4.72	-	11.42	16.73	23.23
S S		184	250	234	294	475	324	-	495	651	816
Σ	h6	7.27	9.84	9.21	11.57	18.7	12.75	-	19.49	25.63	32.12
<u> </u>		78	144	103	163	344	154,5	-	325,5	481,5	646,5
	h7	3.07	5.67	4.06	6.42	13.54	6.08	-	12.82	18.96	25.45
<u> </u>		27	27	32	32	32	36	-	36	36	36
	Hex	1.06	1.06	1.26	1.26	1.26	1.42	-	1.42	1.42	1.42
<u></u>	b4	22,3	22,3	30,2	30,2	30,2	35,7	35,7	35,7	35,7	35,7
P. S.	U4	.88	.88	1.87	1.87	1.87	1.41	1.41	1.41	1.41	1.41
	b5	47,6	47,6	58,7	58,7	58,7	69,9	69,9	69,9	69,9	69,9
Dimensions SAE Flange 3000 PSI	ມວ	1.19	1.19	2.32	2.32	2.32	2.75	2.75	2.75	2.75	2.75
anç	G4	M10 x 15	M10 x 15	M10 x 18			M12 x 20				
<u> </u>	u 4	3/8-16 UNC	3/8-16 UNC	7/16-14 UNC			1/2-13 UN	C			
u	h.4	23,8	23,8	31,8	31,8	31,8	36,5	36,5	36,7	36,7	36,7
PS (b4	.94	.94	1.25	1.25	1.25	1.44	1.44	1.45	1.45	1.45
000	bE	50,8	50,8	66,6	66,6	66,6	79,3	79,3	79,4	79,4	79,4
Dimensions SAE Flange 6000 PSI	b5	2.00	2.00	2.62	2.62	2.62	3.12	3.12	3.13	3.13	3.13
ıme ang	0.4	M10 x 15		M14 x 17		'	M16 x 20	'			
등 E G4		3/8-16 UNC		1/2-13 UNC			5/8-11 UN	С			


Reference: rec.*: Recommended | min.*: Minimum

Dimensions (mm/in)		Filter Size SF											
		014	030	045	070	125	090	130	160	250	300		
	ho	23,8	23,8	31,6	31,6	31,6	36,7	36,7	36,7	36,7	36,7		
	b2	.94	.94	1.24	1.24	1.24	1.45	1.45	1.45	1.45	1.45		
_	ho	50,8	50,8	66,7	66,7	66,7	79,4	79,4	79,4	79,4	79,4		
_	b3	2.00	2.00	2.63	2.63	2.63	3.13	3.13	3.13	3.13	3.13		
	G2	M10 x 15		M14 x 17	M14 x 17			M16 x 20					
	G3	3/8-16 UN	3/8-16 UNC x .59		1/2-13 UNC x .79			5/8–11 UNC x .79					
	b2	32	32	35	35	35	60	60	60	60	60		
≘		1.26	1.26	1.38	1.38	1.38	2.36	2.36	2.36	2.36	2.36		
E E	b3	56	56	85	85	85	115	115	115	115	115		
TH (optional)	D3	2.20	2.20	3.35	3.35	3.35	4.53	4.53	4.53	4.53	4.53		
ڪ	G2	M6 x 9		M10 x 15			M12 x 20						
	G3	1/2-28 UN	1/2-28 UNF x .35		3/8-24 UNF x .59		1/2-20 UN	1/2–20 UNF x .79					

High Pressure Filter Housings / Complete Filters • Type SF

1) Type High Pressure Filter SF ② Group Size Flow 60 I/min / 14 US GPM 014 110 I/min / 30 US GPM 030 160 I/min / 45 US GPM 045 240 I/min / 70 US GPM 070 330 I/min / 90 US GPM 090 475 I/min / 125 US GPM 125 500 I/min / 132 US GPM 130 660 I/min / 160 US GPM 160 990 I/min / 250 US GPM 250 1135 I/min / 300 US GPM 300

Note: Exact flow will depend on the selected filter element. For technical data please see pages 57 / 58.

(3) Filter Material

	Material	max. Δp*collapse	Micron ratings available	Code
	Without filter element	-	-	0
	Inorg. glass fibre	25 bar / 363 PSI	3, 5, 10,	G
	Inorg. glass fibre	210 bar / 3045 PSI	20	Н
	Stainless fibre	210 bar / 3045 PSI	20	Α
	Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	S

Note: * Collapse/burst resistance as per ISO 2941.

(4) Micron Rating

3 μm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200
Note: Other micron ratings on request.	

(5) Sealing Material

NBR (Buna-N®)	В
FKM (Viton®)	V
EPDM	E

Note: Other sealing materials on request.

(6) Connecting Flange

י	Commodaling Flaringo							
	Type T	Т						
	Type TH (optional)	TH						

(10) Thermostop

Without thermostop	none
With thermostop	1

11 Voltage (only for Code P)

24 V DC	0	24
110 V AC	1	10
230 V AC	2	30

7 Connection Style

Connection Style	Thread	Group	Code	Group	Code	Group			Code
	Style	014 03	30	045 070 1	125	090 130	160 250	300	
BSP	-	3/4	G12	1-1/4	G20	1-1/2			G24
BSP	-	1	G16	1-1/2	G24	-			-
NPT	-	3/4	N12	1-1/4	N20	1-1/2			N24
SAE O-ring Thread	-	1-1/16-1	12 U12	1-5/8-12	U20	1-7/8-12			U24
SAE Flange 6000 PSI	metric	3/4	C612M	1-1/4	C620M	1-1/2			C624M
SAE Flange 6000 PSI	UNC	3/4	C612U	1-1/4	C620U	1-1/2			C624U
SAE Flange 3000 PSI	metric	3/4	C312M	1-1/4	C320M	1-1/2			C324M
SAE Flange 3000 PSI	UNC	3/4	C312U	1-1/4	C320U	1-1/2			C324U
SAE Flange 3000 PSI	metric	1	C316M	-	-	2			C332M
SAE Flange 3000 PSI	UNC	1	C316U	-	-	2			C332U

Note: Other port connections on request. Bold types identify preferred connection styles.

(8) Valve

Without integrated Bypass valve*	10
Without valve	0
Integrated Bypass valve*	IB
Bypass valve	В
Reverse flow valve	R
Non-return valve	N
Multi-function valve	M
. *V-1 - T 10 110111-11- (01 -	

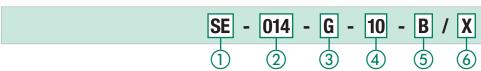
Note: * Valve Type IO and IB only available for Group size SF-014, SF-030, SF-045, SF-070 and SF-125

Clogging Indicator

	Without clogging indicator	0
	Visual, with automatic reset	Α
	Visual, with manual reset	V
	Electrical	E
	Electrical, Deutsch plug	ED
	Visual-electrical	P
	Double Visual-electrical	D024

(12) Style Filter Bowl

,,	
With bowl in one-part style	none
Toploader, with howl in two-part style	TL


Note: Group size SF-250 and SF-300 only available in TL-version.

With drain plug available on request. Group size SF-130 only available in one-part style. Group size SF-125 only available in two-part style.

13 Design Code

Only for information

Filter Elements • Type SE

2 Group According to filter housing

4 Micron Rating

3 µIII	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200

③ Filter Material		Note: Other micron ratings on request	
Material	max. Δp*collapse	Micron ratings available	Code
Inorganic glass fibre	25 bar / 363 PSI		G
Inorganic glass fibre	210 bar / 3045 PSI	3, 5, 10, 20	Н
Stainless fibre	210 bar / 3045 PSI		Α
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	S

Note: * Collapse/burst resistance as per ISO 2941.

5 Sealing Material

3		
NBR (Buna-N®)	В	
FKM (Viton®)	V	
EPDM	E	

Note: Other sealing materials on request.

(6) Design Code

Only for information X

High Pressure Filters • Type SF-TM

Product Description

STAUFF SF-TM series High Pressure Filters are designed for manifold block mounting hydraulic applications, with a maximum operating pressure of 315 bar / 4560 PSI.

Used together with STAUFF SE series Filter Elements, a high efficiency of contaminant removal is assured. The high dirt-hold capacity of the elements ensures long service life and, as a result, reduced maintenance costs.

Technical Data

Construction

• Designed for manifold mounting, with mounting holes and fluid ports on top of the head.

Materials

• Filter head: SF-TM-014 ... 125 Free Cutting Steel

SF-TM-090 ... 300 Spheroidal Graphite Cast Iron

Filter bowl: Cold Drawn SteelO-rings: NBR (Buna-N®)

FKM (Viton®)

EPDM (Ethylene-Propylene-Diene-Monomer-Rubber)

• Support ring: PTFE (Polytetrafluoroethylene)

Operating Pressure

■ Max. 315 bar / 4560 PSI

Burst Pressure

Min. 945 bar / 13705 PSI

Temperature Range

 \blacksquare -10 °C ... +100 °C / +14 °F ... +212 °F

Filter Elements

Specifications see page 44

Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

Valves

Bypass valve: Allows unfiltered oil to bypass the contaminated element

once the opening pressure has been reached, a differential pressure of 6 $^+$ $^{0.5}$ bar / 87 $^+$ $^{7.25}$ PSI Δp is the standard setting. Other settings available upon request.

· Reverse flow valve: Allows reverse flow through the filter head without backflushing

the element.

• Non-return valve: Prevents draining of the delivery line during element change.

Multi-function

valve: Opening pressure 6 +0,5 bar / 87 +7.25 PSI

Bypass, reverse flow capability and non-return valve

combined in one valve.

Clogging Indicators

Standard actuating

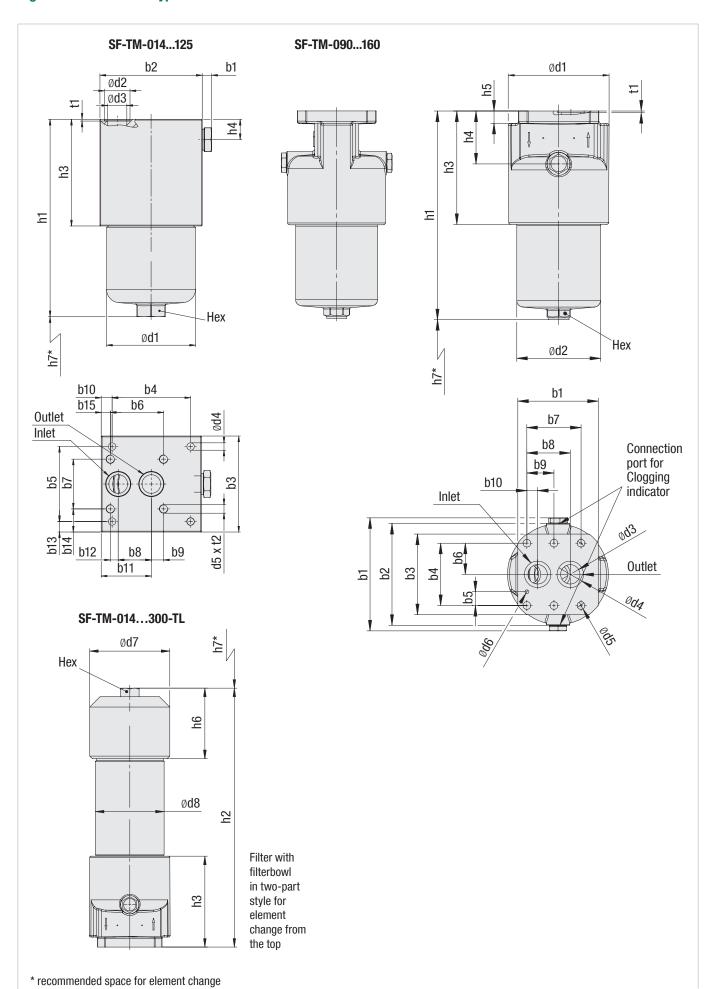
pressure: $$5_{-0.5}\,{\rm bar}\,/\,72.5_{-7.25}\,{\rm PSI}\,\Delta p$

Other actuating pressure settings are available upon request.

Available indicators: Visual

Electrical

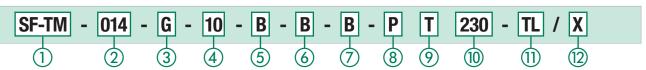
Visual-electrical (24 V DC, 110 V AC, 230 V AC versions)


Double Visual-electrical (24 V DC)

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

High Pressure Filters ■ **Type SF-TM**

High Pressure Filters • Type SF-TM


D'	(P-A)	Filter Size S	SF-TM								
Dimensions (mm	1/IN)	014	030	045	070	125	090	130	160	250	300
1		6	6	6	6	6	175,6	175,6	175,6	175,6	175,6
''		.24	.24	.24	.24	.24	6.91	6.91	6.91	6.91	6.91
_		104	104	115	115	115	158	158	158	158	158
2		4.09	4.09	4.53	4.53	4.53	6.22	6.22	6.22	6.22	6.22
		80	80	110	110	110	125	125	125	125	125
3		3.35	3.35	4.33	4.33	4.33	4.92	4.92	4.92	4.92	4.92
		89	89	90	90	90	96,8	96,8		96,8	96,8
4									96,8		
		3.50	3.50	3.54	3.54	3.54	3.81	3.81	3.81	3.81	3.81
5		31,8	31,8	86	86	86	21,4	21,4	21,4	21,4	21,4
		1.25	1.25	3.39	3.39	3.39	.84	.84	.84	.84	.84
_				61	61	61	48,4	48,4	48,4	48,4	48,4
6		-	-	2.40	2.40	2.40	1.91	1.91	1.91	1.91	1.91
				57	57	57	84,1	84,1	84,1	84,1	84,1
7		-	-	2.24	2.24	2.24	3.31	3.31	3.31	3.31	3.31
		04.0	04.0								
8		31,6	31,6	38	38	38	67,4	67,4	67,4	67,4	67,4
		1.24	1.24	1.50	1.50	1.50	2.65	2.65	2.65	2.65	2.65
9			_	14	14	14	42,05	42,05	42,05	42,05	42,05
19		-	-	.55	.55	.55	1.66	1.66	1.66	1.66	1.66
		7,5	7,5	12,5	12,5	12,5	16,7	16,7	16,7	16,7	16,7
10		.30	.30	.49	.49	.49	.66	.66	.66	.66	.66
		55,9	55,9				.00	.00	.00	.00	.00
11				57,5	57,5	57,5	-	-	-	-	-
		2.20	2.20	2.26	2.26	2.26					
12		_	_	9	9	9		_			_
14				.35	.35	.35					
		24,1	24,1	12	12	12					
13		.95	.95	.47	.47	.47	-	-	-	-	-
		.00	.00	26,5	26,5	26,5					
14		-	-				-	-	-	-	-
				1.04	1.04	1.04					
b15		_	_	10,5	10,5	10,5	_	_	_	_	_
310				.41	.41	.41					
		68,2	68,2	95,2	95,2	95,2	156	156	156	156	156
d1		2.69	2.69	3.75	3.75	3.75	6.14	6.14	6.14	6.14	6.14
		25,3	25,3	28,6	28,6	28,6	130,2	130,2	130,2	130,2	130,2
12											
		1.00	1.00	1.13	1.13	1.13	5.13	5.13	5.13	5.13	5.13
d3		17,5	17,5	21,4	21,4	21,4	30	30	30	30	30
		.69	.69	.84	.84	.84	1.18	1.18	1.18	1.18	1.18
		8,5	8,5	9	9	9	41	41	41	41	41
d4		.33	.33	.35	.35	.35	1.61	1.61	1.61	1.61	1.61
		.00	100	1.00	100	1.00	12	12	12	12	12
d5		-	-	7/16-14 UNC	7/16-14 UNC	7/16-14 UNC	.47	.47	.47	.47	.47
16		_	_	-	_	_	6	6	6	6	6
							.24	.24	.24	.24	.24
17		84	84	115	115	115	155		155	155	155
17		3.31	3.31	4.53	4.53	4.53	6.10		6.10	6.10	6.10
		70	70	101,6	101,6	101,6	133		133	133	133
18		2.76	2.76	4.00	4.00	4.00	5.24	-	5.24	5.24	5.24
								447.5		3.24	5.24
11		162	228	206	264	446	324	417,5	495		-
		6.38	8.97	8.11	10.39	17.56	12.76	16.44	19.49		
12		164	230	206	266	447	330,5		501,5	657,5	822,5
12		6.46	9.06	8.11	10.47	17.60	13.01	7	19.74	25.89	32.38
_		76	76	93	93	93	178	178	178	178	178
13		2.99	2.99	3.66	3.66	3.66	7.01	7.01	7.01	7.01	7.01
		25			25	25	82	82	82	82	82
14			25	25							
		.98	.98	.98	.98	.98	3.23	3.23	3.23	3.23	3.23
15		_		_		_	19,1	19,1	19,1	19,1	19,1
10							.75	.75	.75	.75	.75
		64	64	82,5	82,5	82,5	136		136	136	136
16		2.52	2.52	3.25	3.25	3.25	5.35	-	5.35	5.35	5.35
		100	170	140	200	380	190	285	360	5.00	0.00
	rec.*									-	-
One-Part		3.94	6.69	5.51	7.87	14.96	7.48	14.17	14.17		
Style	min.*	85	85	120	120	120	150	150	150		_
		3.35	3.35	4.72	4.72	4.72	5.91	5.91	5.91		
	01.1	65	130	100	160	340	120		290	425	590
Two-Part	Style	2.56	5.12	3.94	6.30	13.39	4.72	-	11.42	16.73	23.23
		2.30	2	2	2	2	3	3	3	3	3
1											
		.08	.08	.08	.08	.08	.12	.12	.12	.12	.12
2		_	_	13	13	13					_
۷.				.51	.51	.51	-	-	-	-	
		27	27	32	32	32	36	36	36	36	36
lex		1.06	1.06	1.26	1.26	1.26	1.42	1.42	1.42	1.42	1.42
										1.42	1.42
	e-Part	5,7	6,3	11	12,5	17	21,6	25,7	28,8		_
Or			12.0	24.2	27.8	37.8	48.0	56,7	64.0		
Or Weight	Style	12.5	13.9			07.0		50,7			
Or Weight S		12.5 6,6	7,3	13,1	14,6	21	26,5	50,1	33,8	43,2	54,6

Reference: rec.*: Recommended | min.*: Minimum

High Pressure Filter Housings / Complete Filters • Type SF-TM

,	aroup	
	Flow	Size
	60 I/min / 14 US GPM	014
	110 I/min / 30 US GPM	030
	160 I/min / 45 US GPM	045
	240 I/min / 70 US GPM	070
	330 I/min / 90 US GPM	090
	475 I/min / 125 US GPM	125
	500 I/min / 132 US GPM	130
	660 I/min / 160 US GPM	160
	990 I/min / 250 US GPM	250
	1135 I/min / 300 US GPM	300

Note: Exact flow will depend on the selected filter element. For technical data please see pages 57 / 58.

3 Filter Material

Material	max. ∆p*collapse	Micron ratings available	Code
Without filter element	-	-	0
Inorg. glass fibre Inorg. glass fibre Stainless fibre	25 bar / 363 PSI 210 bar / 3045 PSI 210 bar / 3045 PSI	3, 5, 10, 20	G H A
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	s

Note: * Collapse/burst resistance as per ISO 2941.

(4) Micron Rating

3 μm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200
Note: Other micron ratings on reques	t.

L... _ . _ _ _

5 Sealing Material

NBR (Buna-N®)	В
FKM (Viton®)	٧
EPDM	Ε

Note: Other sealing materials on request.

11) Style Filter Bowl

With bowl in one-part style none
Toploader, with bowl in two-part style TL

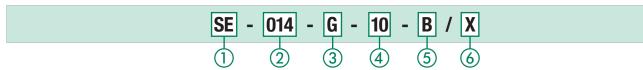
Note: Group size SF-TM-250 and SF-TM-300 only available in TL-version.

(6) Connection Size

Connection	Group		Code	Group			Code	Group			Code	
Size	014	030		045	070	125		090	160	250	300	
Special Flange	Ø17,5mr	m / Ø.69in	В	Ø21,4mi	m / Ø .85iı	n	В	Ø30m	m / Ø1	.18in		В

Valve Without valve 0 Bypass valve B Reverse flow valve R Non-return valve N Multi-function valve M

8 Clogging Indicator Without clogging indicator Visual, with automatic reset A Visual, with manual reset V Electrical Electrical, Deutsch plug Visual-electrical P Double Visual-electrical D024


ThermostopWithout thermostopWith thermostopT

(ii) Voltage (only for Code P) 24 V DC 024 110 V AC 110 230 V AC 230

(12) Design Code

Only for information X

Filter Elements • Type SE

4 Micron Rating 3 µm 5 um 05 10 µm 10 20 µm 20 25 µm 25 50 µm 50 100 µm 100 200 $200 \, \mu m$

Note: Other micron ratings on request.

③ Filter Material

Material	max. Δp*collapse	Micron ratings available	Code
Inorganic glass fibre	25 bar / 363 PSI		G
Inorganic glass fibre	210 bar / 3045 PSI	3, 5, 10, 20	Н
Stainless fibre	210 bar / 3045 PSI		Α
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	S

Note: * Collapse/burst resistance as per ISO 2941.

	(5)	Sea	ling	Ma	teria	ı
--	-----	-----	------	----	-------	---

ע	ocaling material	
	NBR (Buna-N®)	В
	FKM (Viton®)	V
	EPDM	E

Note: Other sealing materials on request

6 Design Code

Only for information

High Pressure Filters • Type SFZ

Product Description

STAUFF SFZ series High Pressure Filters are designed for sandwich plate mounting in manifold block mounting hydraulic applications, with a maximum operating pressure of 315 bar / 4560 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contaminant removal is assured. The high dirt-hold capacity of the elements ensures long service life and, as a result, reduced maintenance costs.

Technical Data

Construction

Designed for sandwich plate mounting

Materials

Filter head: Free Cutting Steel • Filter bowl: Cold Drawn Steel NBR (Buna-N®) • 0-rings:

FKM (Viton®)

EPDM (Ethylene-Propylene-Diene-Monomer-Rubber)

• Support ring (bowl): PTFE (Polytetrafluoroethylene)

Connecting Port

 According to ISO 4401-03-02-0-05 NG6 / DIN24340-A6 / Cetop R 35 H (Ref.: NFPA/ANSI D03)

Operating Pressure

Max. 315 bar / 4560 PSI

Burst Pressure

Min. 945 bar / 13705 PSI

Temperature Range

 \blacksquare -10 °C ... +100 °C / +14 °F ... +212 °F

Filter Elements

Specifications see page 44

Media Compatibility

• Mineral oils, other fluids on request

0-ring for connection ports

• 9x1,7 (4x included in delivery)

Options and Accessories

Clogging Indicator

Standard actuating

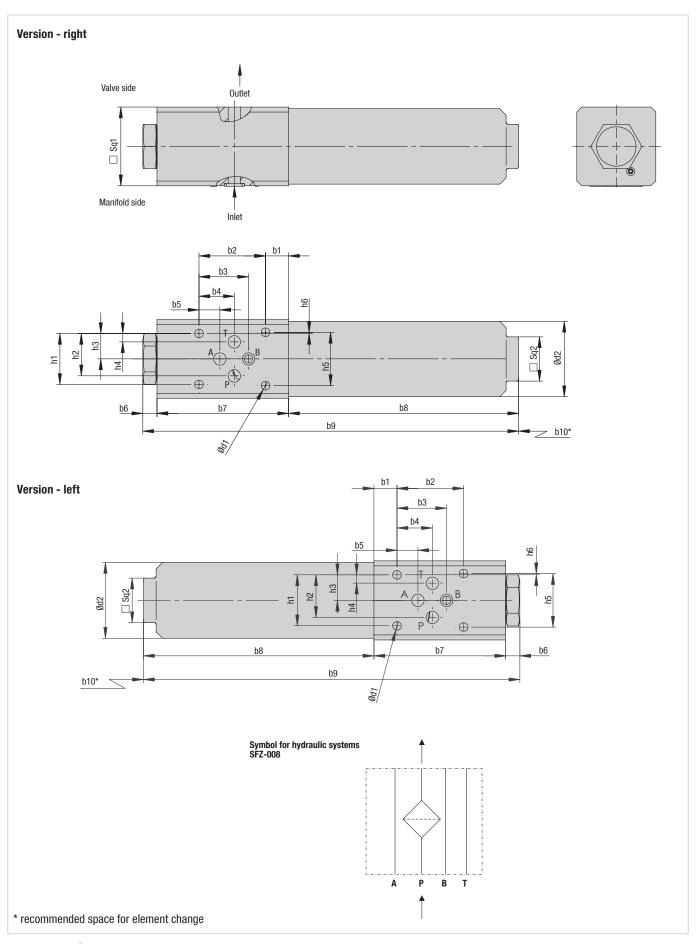
pressure:

5 $_{-0.5}$ bar / 72.5 $_{-7.25}$ PSI Δp Other actuating pressure settings are available upon request.

Available indicators: Visual

Visual-electrical (24 V DC, 110 V AC, 230 V AC versions)

Double Visual-electrical (24 V DC)



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

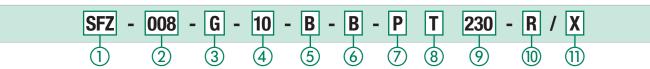
High Pressure Filters • Type SFZ

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

High Pressure Filters • Type SFZ

D	Filter Size SFZ
Dimensions (mm/in)	SFZ-008
h1	14 .55
b1	.55
b2	40,5
UZ	1.59
b3	30,2
00	1.19
b4	21,5
U-T	.85
b5	12,7
50	.50
b6	9
50	.35
b7	80
UI.	3.15
b8	140
50	5.51
b9	229
55	9.02
b10	50
510	1.97
d1	5,3
41	.21
d2	46
	1.81
h1	31
	1.22
h2	25,8
	1.02
h3	15,5
	.61
h4	5,1
	.20
h5	32,5
-	1.28
h6	0,75
	.03
Sq1	48
- 1	1.89
Sq2	27
	1.06


1800-OILSOL 1800-645765

https://oilsolutions.com.au/

High Pressure Filter Housings / Complete Filters - Type SFZ

Size

Type
 High Pressure Filter for sandwich plate mounting
 Group
 Flow

Note: Exact flow will depend on the selected filter element.

③ Filter Material

30 I/min / 8 US GPM

Please note that the filter element is not protected by an internal bypass. Please be sure that the hydraulic system is designed with the sufficient means to protect the element.

	Material	max. Δp*collapse	Micron ratings available	Code
	Without filter element	-	-	0
	Inorg. glass fibre Inorg. glass fibre Stainless fibre	25 bar / 363 PSI 210 bar / 3045 PSI 210 bar / 3045 PSI	3, 5, 10, 20	G H M
	Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	s

Note: * Collapse/burst resistance as per ISO 2941.

(4) Micron Rating

:	3 μm	03
ļ	5 μm	05
•	10 μm	10
2	20 μm	20
2	25 μm	25
ļ	50 μm	50
•	100 μm	100
2	200 μm	200

Note: Other micron ratings on request.

(5) Sealing Material

NBR (Buna-N®)	E
FKM (Viton®)	١
EPDM	- 1

Note: Other sealing materials on request.

(6) Connection Size

Connection Size	Group 008	Code
Nominal Bore	NG6* (Ref.: D03)	В

* ISO 4401-03-02-0-05 / DIN 24340-A6 / Cetop R 35 H $\,$

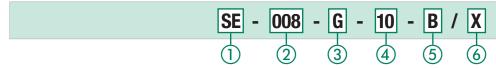
Clogging Indicator

without clogging indicator	U
Visual, with automatic reset	Α
Visual, with manual reset	V
Electrical	E
Electrical, Deutsch plug	ED
Visual-electrical	P
Double Visual-electrical	D024

® Thermostop

Without thermostop	none
With thermostop	T

Voltage (only for Code P)


, ronago (omy for ocuo i)	
24 V DC	024
110 V AC	110
230 V AC	230

10 Design

Version right	F
Version left	I

① Design Code
Only for information

Filter Elements - Type SE

① Type

Filter Element Series

② Group

According to filter housing

③ Filter Material

Please note that the filter element is not protected by an internal bypass. Please be sure that the hydraulic system is designed with the sufficient means to protect the element.

Material	max. Δp*collapse	Micron ratings available	Code
Inorg. glass fibre	25 bar / 363 PSI	3, 5, 10, 20	G
Inorg. glass fibre	210 bar / 3045 PSI		Н
Stainless fibre	210 bar / 3045 PSI	20	M
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	S

* Collapse/burst resistance as per ISO 2941.

4 Micron Rating

3 µm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200

Note: Other micron ratings on request.

5 Sealing Material

ע	Scalling Material	
	NBR (Buna-N®)	В
	FKM (Viton®)	۷
	EPDM	Ε

Note: Other sealing materials on request.

6 Design Code

Only for information X

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Medium Pressure Filters • Type SFA

Product Description

STAUFF SFA series Medium Pressure Filters are designed for in-line hydraulic applications with a maximum operating pressure of 160 bar / 2320 PSI. Used together with STAUFF SE series Filter Elements, a high efficiency of contamination removal is assured. The dirt-hold capacity of the elements ensures long service life, and as a result, reduced maintenance costs.

Technical Data

Construction

• Designed for in-line assembly, with threaded mounting holes on top of the head.

Materials

Filter head: Cast Aluminium
 Filter bowl: Aluminium
 O-rings: NBR (Buna-N®)
 FKM (Viton®)

EPDM (Ethylene-Propylene-Diene-Monomer-Rubber)

• Support ring: PTFE (Polytetrafluoroethylene)

Port Connections

■ BSP

■ NPT

SAE 0-ring thread

SAE 3000 PSI (Code 61) flange

Operating Pressure

SFA-014/030: Max. 160 bar / 2320 PSI

Max. 190 bar / 2755 PSI (according to ANSI T2.6.1. R2-2001)

■ SFA-045/070: Max. 150 bar / 2175 PSI

Max. 171 bar / 2480 PSI (according to ANSI T2.6.1. R2-2001)

Burst Pressure

Min. 480 bar / 6960 PSI

Temperature Range

■ -10 °C ... +100 °C / +14 °F ... +212 °F

Filter Elements

Specifications see page 52

Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

Valves

Bypass valve: Allows unfiltered oil to bypass the contaminated element once

the opening pressure has been reached, a differential pressure of 6 $^+$ $^{0.5}$ bar / 87 $^+$ $^{7.25}$ PSI Δp is the standard setting. Other settings available upon request.

 $\blacksquare \ \, \text{Reverse flow valve: Allows reverse flow through the filter head without backflushing}$

the element.

• Non-return valve: Prevents draining of the delivery line during element change.

Multi-function

valve: Opening pressure 6 +0,5 bar / 87 +7.25 PSI

Bypass, reverse flow capability and non-return valve

combined in one valve.

Clogging IndicatorsStandard actuating

pressure: $5_{-0.5}$ bar / 72.5 $_{-7.25}$ PSI Δp

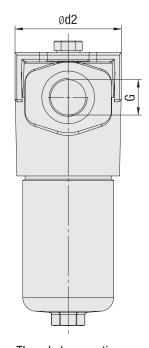
Other actuating pressure settings are available upon request.

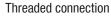
Available indicators: Visual

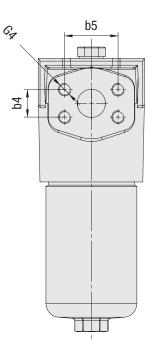
Electrical

Visual-electrical (24 V DC, 110 V AC, 230 V AC versions)

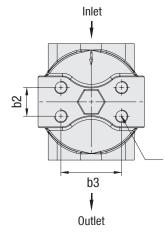
Double Visual-electrical (24 V DC)




1800-OILSOL 1800-645765 https://oilsolutions.com.au/


Medium Pressure Filters • Type SFA

b1 H h2 Hex Ød1 h5*


SFA-014...070

Flange connection

G2: for BSP threads and metric G3: for NPT- and SAE-threads and for UNC-flanges

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

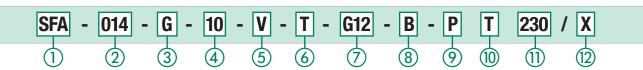
^{*} recommended space for element change

Medium Pressure Filters • Type SFA

Thread Connection G	Filter Size SFA	Filter Size SFA					
Tiffeau Confidention G	014	030	045	070			
BSP	3/4	3/4	1-1/4	1-1/4			
NPT	3/4	3/4	1-1/4	1-1/4			
SAE 0-ring Thread	1-1/6-12	1-1/6-12	1-5/8-12	1-5/8–12			
SAE Flange 3000 PSI	3/4	3/4	1-1/4	1-1/4			
Woight (kg/lbo)	2,1	2,54	4,6	5,3			
Weight (kg/lbs)	4.7	5.6	10.2	11.8			

Dimor	ociono (mm/in)	Filter Size SFA			
Dilliel	nsions (mm/in)	014	030	045	070
b1		92	92	128	128
UI		3.62	3.62	5.04	5.04
d1		72	72	100	100
uı		2.83	2.83	3.93	3.93
d2		86	86	117	117
uz		3.39	3.39	4.61	4.61
h1		187,5	255	241,5	301
		7.38	10.04	9.51	11.85
h2		78	145,5	105	164,5
112		3.07	5.73	4.13	6.46
h3		40	40	49,5	49,5
113		1.58	1.58	1.95	1.95
h4		12,5	12,5	12,5	12,5
114		.49	.49	.49	.49
	rec.*	100	170	140	200
h5	160.	3.94	6.69	5.51	7.87
IIJ	min.*	85	85	120	120
	111111.	3.35	3.35	4.72	4.72
Hex		27	27	32	32
HUX		1.05	1.05	1.25	1.25
щ <u>г</u>	b4	22,3	22,3	30,2	30,2
SAO	UT	.88	.88	1.19	1.19
300	b5	47,6	47,6	58,7	58,7
ansi ge 3	100	1.87	1.87	2.32	2.32
Dimensions SAE Flange 3000 PSI	G4	M10 x 15 or	M10 x 15 or	M10 x 18 or	M10 x 18 or
	ш ич	3/8-16 UNC	3/8-16 UNC	7/16-14 UNC	7/16–14 UNC

Reference: rec.*: Recommended | min.*: Minimum


Dimo	noiono (mm/in)	Filter Size SFA					
Dillie	nsions (mm/in)	014	030	045	070		
	b2	23,8	23,8	31,6	31,6		
	02	.94	.94	1.24	1.24		
_	b3	50,8	50,8	66,7	66,7		
-	D3	2.00	2.00	2.63	2.63		
	G2	M10 x 15	M10 x 15	M14 x 17	M14 x 17		
	G3	3/8-16 UNC x .59	3/8-16 UNC x .59	1/2-13 UNC x .59	1/2-13 UNC x .59		

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Medium Pressure Filter Housings / Complete Filters • Type SFA

Note: Exact flow will depend on the selected filter element. For technical data please see pages 57 / 58.

(3) Filter Material

Material	max. Δp*collapse	Micron ratings available	Code
Without filter element	-	-	0
Inorg. glass fibre	25 bar / 363 PSI	2 5 10	G
Inorg. glass fibre	210 bar / 3045 PSI	3, 5, 10,	Н
Stainless fibre	210 bar / 3045 PSI	20	Α
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	S

Note: * Collapse/burst resistance as per ISO 2941.

(4) Micron Rating

_		•	
	3 µm		03
	5 μm		05
	10 µm		10
	20 μm		20
	25 μm		25
	50 μm		50
	100 µm		100
	200 μm		200
	Note: Other micr	on ratings on request.	

5 Sealing Material

NBR (Buna-N®)	В
FKM (Viton®)	V
EPDM	E

Note: Other sealing materials on request.

(6) Connection Flange Type T

7 Connection Style

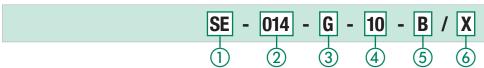
10	Thermostop	
	Without thermostop	non
	With thermostop	
(11)	Voltage (only for Code P)	
_	7	

24 V DC 024 110 V AC 110 230 V AC

Connection Style	Thread	d Group		Code	Code Group		Code	
	Style	014	030		045	070		
BSP	-	3/4		G12	1-1/4		G20	
BSP	-	1		G16	1-1/2		G24	
NPT	-	3/4		N12	1-1/4		N20	
SAE O-ring Thread	-	1-1/16-12		U12	1-5/8-12		U20	
SAE Flange 3000 PSI	metric	3/4		C312M	1-1/4		C320M	
SAE Flange 3000 PSI	UNC	3/4		C312U	1-1/4		C320U	
SAE Flange 3000 PSI	metric	1		C316M	-		-	
SAE Flange 3000 PSI	UNC	1		C316U	-		-	

Note: Other port connections on request. Bold types identify preferred connection styles.

8 Valve


	Without valve	0	
	Bypass valve	В	
	Reverse flow valve	R	
	Non-return valve	N	
	Multi-function valve	M	
<u></u>	Clogging Indicator		
(9)			
	Without clogging indicator	0	
	Visual, with automatic reset	Α	

)	Glogging indicator	
	Without clogging indicator	0
	Visual, with automatic reset	Α
	Visual, with manual reset	V
	Electrical	Е
	Electrical, Deutsch plug	ED
	Visual-electrical	P
	Double Visual-electrical	D024

(12) Design Code

Only for information

Filter Elements • Type SE

4 Micron Rating $3 \, \mu m$ 03 05 5 µm 10 µm 10 20 µm 20 25 µm 25 50 µm 50 100 µm 100 200 µm

Note: Other micron ratings on request.

Material	max. Δp*collapse	Micron ratings available	Code
Inorganic glass fibre	25 bar / 363 PSI		G
Inorganic glass fibre	210 bar / 3045 PSI	3, 5, 10, 20	Н
Stainless fibre	210 bar / 3045 PSI		Α
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	S

Note: Collapse/burst resistance as per ISO 2941.

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

sales@oilsolutions.com.au

Note: Other sealing materials on request.

6 Design Code

Only for information

(3) Filter Material

Valves

Product Description (not available for SFZ)

The optional valves are fitted as an insert in the filter head and incorporate the spigot on which the element seals. The valve is selected to suit the filter application.

Non-bypass standard insert without any valve function.

Element collapse rating should be higher than the system pressure

HVB

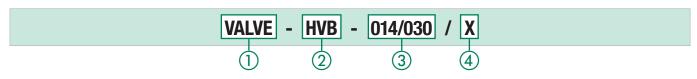
Bypass valve which allows oil to bypass the element when the differential pressure across the element reaches $6^{+0.5}$ bar / 87^{+7.25} PSI. (Other pressure settings available on request). The opening pressure should be higher than the Δp setting of an optional clogging indicator. Low collapse 30 bar / 435 PSI Δp elements are normally used with this valve.

HVR

Reverse flow valve is used in systems where there is flow in reverse through the filter. It allows reverse flow without backflushing the element but does not filter in the reverse direction. Element collapse rating should be higher than the system pressure.

Non-return valve

HVN


HVM

This valve prevents the oil in the delivery line from draining out while the filter is being serviced. Because there is no bypass, the element collapse rating should be higher than system pressure.

Multi-function valve

This valve combines the bypass, the reverse flow and the non-return functions in one unit. The by-pass opening pressure is $6^{+0.5}$ bar / $87^{+7.25}$ PSI Δp with other opening pressures available on request. The opening pressure should be higher than the Δp setting of an optional clogging indicator. Low collapse 30 bar / 435 PSI Δp elements are normally used with this valve.

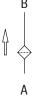
Order Code

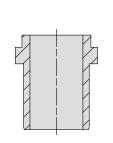
1) Type

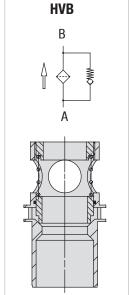
Valve for Pressure Filters VALVE

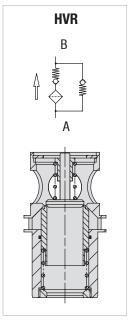
② Valve Type

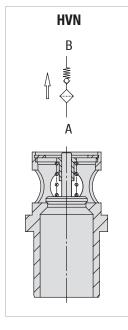
Non-bypass standard insert without any valve	HVO
Bypass valve	HVB
Reverse flow valve	HVR
Non-return valve	HVN
Multi-function valve	HVM

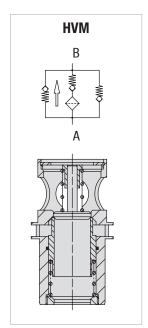

③ Filter Group


For filter size 014/030	014/030
For filter size 045/070/125	045/070
For filter size 090/160/250/300	090/160


4 Design Code

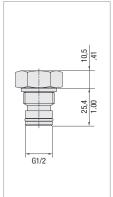

Only for information


HVO B



Flow characteristics of the valves see page 56.

1800-OILSOL 1800-645765 https://oilsolutions.com.au/


Clogging Indicators

Product Description

STAUFF Pressure Filters have a wide range of clogging indicators available. If no indicator is specified, the port is sealed by a plug (HI-O). The clogging indicators are actuated by the differential pressure (Δ p) across the element. The special piston design minimizes the effects of peak pressures in the system. An optional thermal lockout (thermo-stop) is available to prevent false indication under cold start conditions. Fluid temperature have to be at least +20 °C / +68 °F for the indicator to function.

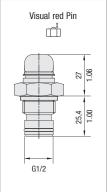
Plug Type HI-O and visual Clogging Indicators Type HI-A and HI-V

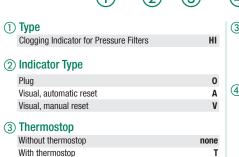
Technical Data

Materials

Stainless Steel Body:

The visual clogging indicators are available in the following configurations:


Manual reset: The indicator continues to display the clogged signal even through the Δp may have fallen. Pressing the plastic cover down will reset the indicator.


Automatic reset:

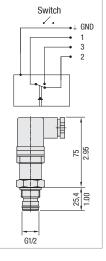
The clogged signal will disappear when the Δp drops below the setting for the indicator.

Order Code

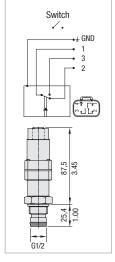
NBR (Buna-N®)	В
FKM (Viton®)	V
EPDM	E

(4) Differential Pressure Setting (only HI-A and HI-V)

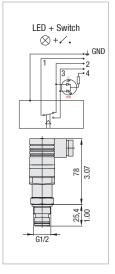
1,72 bar / 25 PSI	B1.7
2,0 bar / 29 PSI	B2.0
2,5 bar / 36.3 PSI	B2.5
3,0 bar / 43.5 PSI	B3.0
5,0 bar / 72.5 PSI (standard option)	B5.0
7,0 bar / 101.5 PSI	B7.0


Note: Bold types identify standard option

(5) Design Code


Only for information

Electrical and Visual-electrical Clogging Indicators Type HI-E, HI-ED and HI-P



Continued on page 55.

Dimensional drawings: All dimensions in mm/in.

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Clogging Indicators

Technical Data

Materials

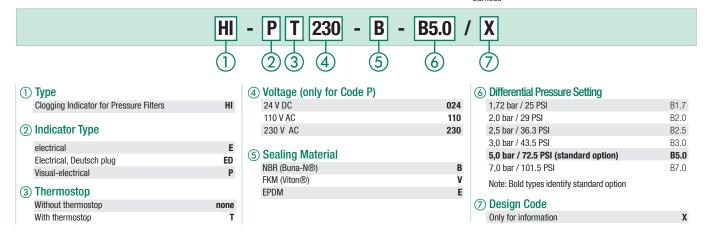
Body: Stainless Steel

Alarm outputs

- HI-F: electrical
- HI-ED: electrical
- HI-P: visual-electrical (LED red and green)

Electrical

- Plug according to DIN-EN 175301-803 A (DIN 43650-A).
- Screwed cable gland PG11
- Protection rating (DIN 40050) IP65
- Both NO and NC contacts are available in the switch, rated capacity: see chart below
- Deutsch plug


Note: The customer / user carries the responsibility for the electrical connection.

Rated Capacity

Voltage	Resistive Load	Inductive Load
V	Α	Α
110 V AC	5A	3A
230 V AC	3A	2A
24 V DC	4A	3A
	Max. Load	
24 V AC ± 10%	1A	

High voltage peaks occur when inductive loads are switched off. Protective circuitry should be employed to reduce contact burnout

Order Code

Double Visual-electrical Clogging Indicator

Product Description

The differential pressure indicator HI-D024 is a microprocessor controlled pressure switch with two alarm outputs for pre-alarm and shut-off. It is used to monitor the capacity of oil filters in oil-circulating systems. For this purpose, a microprocessor-controlled pressure sensor observes the dynamic pressure in front of the filter element or the differential pressure at the filter element. The pressure increases depending on the cumulative clogging of the filter. To avoid false alarms due to high viscosity during start-up, the device is equipped with a temperature control and time delay function.

Technical Data

Connection Thread

■ G1/2

Operating Pressure

Max. 420 bar / 6000 PSI

Temperature Range

- -20 °C ... +80 °C / -4 °F ... +176 °F
- ready for operation > 20 °C / 68 °F

Materials

Body: BrassSealing Material: NBR (Buna-N®)

Protection Rating

■ IP 67

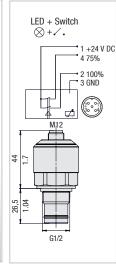
Rated Capacity

Max. 0,2 A, 24 V DC

Operating Voltage

24 V DC

Alarm outputs (electrical)


- 3,8 + 10% bar / 55.1 +/- 10% PSI Δp = 75% (Pin 4)
- 5 + 10% bar / 72.5 +/- 10% PSI Δp = 100% (Pin 2)

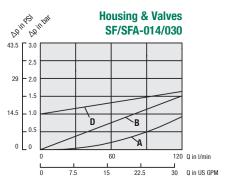
Alarm outputs (visual)

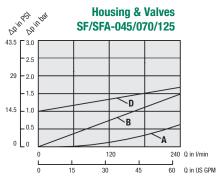
Range	Color	
(%FS)	T>T* (Thermo-	stop)
0-50	green	
50-75	yellow	
75-100	orange	
100	red (flashing)	
	T <t* (thermo-<="" td=""><td>stop)</td></t*>	stop)
0-100	blue	

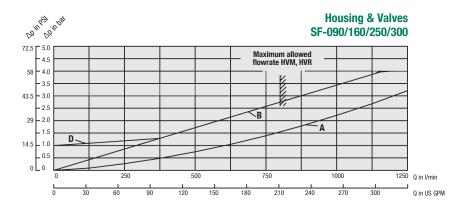
T= Temperature $T^*= 20 \, ^{\circ}\text{C} \, / \, 68 \, ^{\circ}\text{F}$

Order Code

Dimensional drawings: All dimensions in mm/in.


1800-OILSOL 1800-645765 https://oilsolutions.com.au/



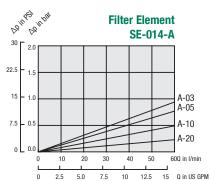

High and Medium Pressure Filters • Type SF / SF-TM / SFZ / SFA

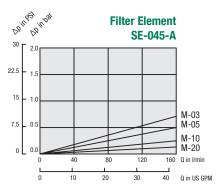
The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Contact STAUFF for details.

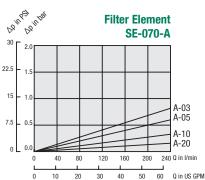
Valve Configuration	Flow direction	Curve
Housing with HVO/IO or HVB/IB	Inlet → Outlet	Α
HVM, HVR, HVN	Inlet → Outlet	В
HVM,HVR Reverse mode	Outlet →Inlet	D

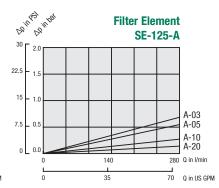
1800-OILSOL 1800-645765

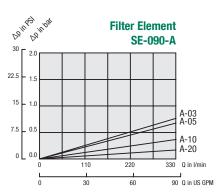

https://oilsolutions.com.au/

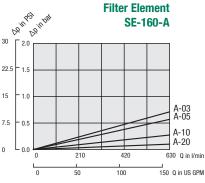


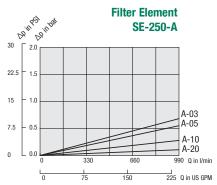

High and Medium Pressure Filters • Type SF / SF-TM / SFZ / SFA

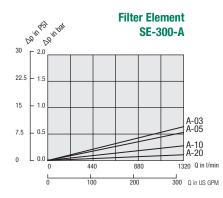

The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Contact STAUFF for details.

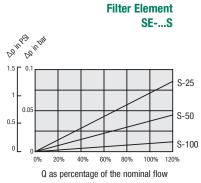


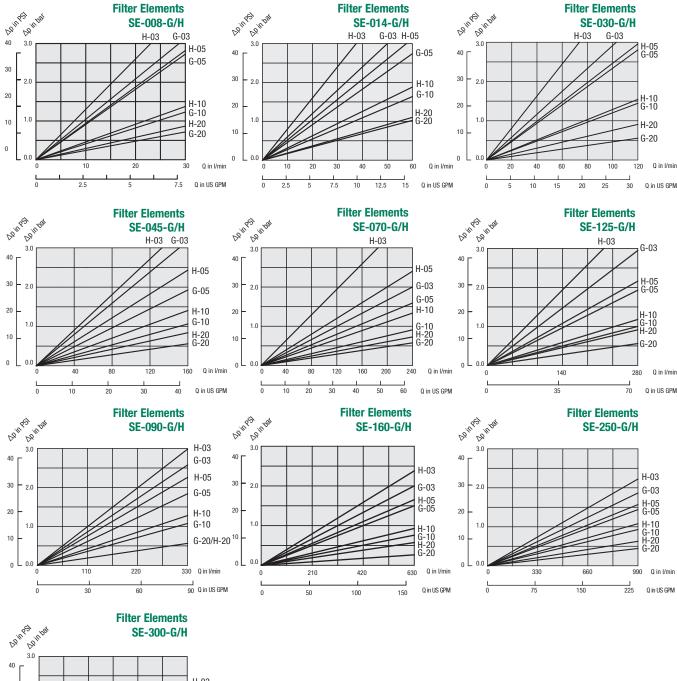


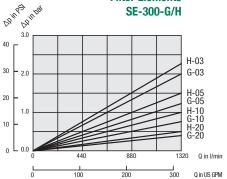











1800-OILSOL 1800-645765 https://oilsolutions.com.au/

High and Medium Pressure Filters • Type SF / SF-TM / SFZ / SFA

The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cst). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Contact STAUFF for details.

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Medium Pressure Filters • Type SMPF

Product Description

STAUFF SMPF Medium Pressure Filters are designed for in-line hydraulic applications with a maximum operating pressure of 110 bar / 1600 PSI. Used together with STAUFF Filter Elements, a high efficiency of contamination removal is assured.

Technical Data

Construction

In-line assembly

Materials

Filter head: Aluminium Alloy
 Filter bowl: Aluminium Alloy
 Sealings: NBR (Buna-N®)

Port Connections

BSP

■ SAE 0-ring thread

Flow Rating

■ Up to 90 I/min / 25 US GPM

Operating Pressure

Max. 110 bar / 1600 PSI

Burst Pressure

■ 300 bar / 4350 PSI

Temperature Range

■ -25 °C ... +110 °C / -13 °F ... +230 °F

Filter Elements

Specifications see page 62

Media Compatibility

Mineral oils, other fluids on request

Options and Accessories

Valve

Bypass valve: Allows unfiltered oil to bypass the contaminated

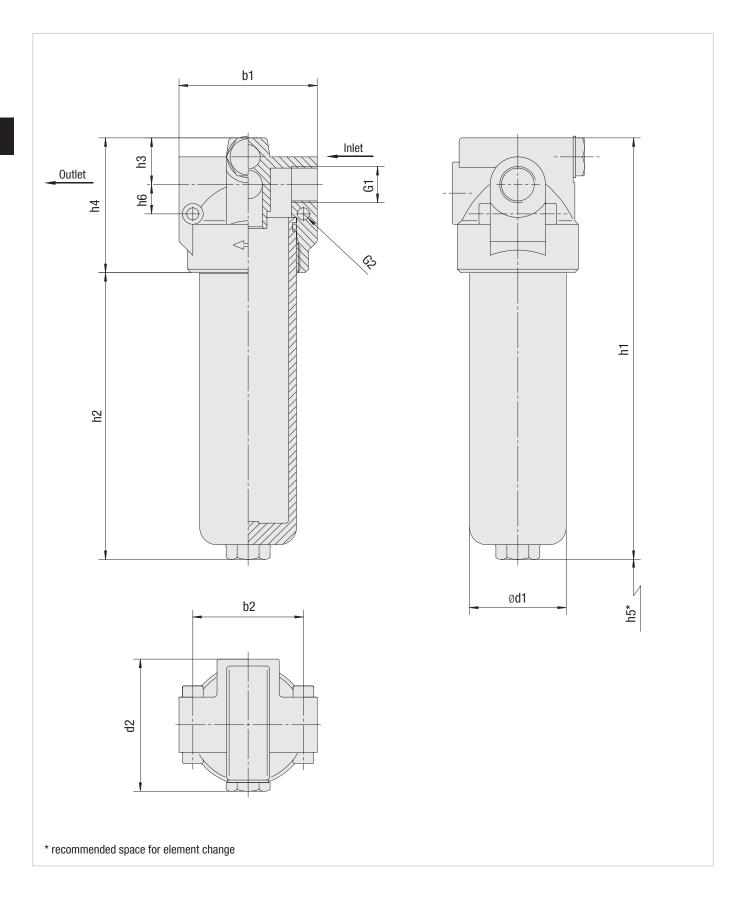
element once the opening pressure has been reached $6 \text{ bar / } 87 \text{ PSI } \pm 10\%$ is the standard actuating pressure

Clogging Indicators

Standard actuating

pressure: 5 bar / 72.5 PSI ±10%

Available indicators: Visual


Visual-electrical

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Medium Pressure Filters • Type SMPF

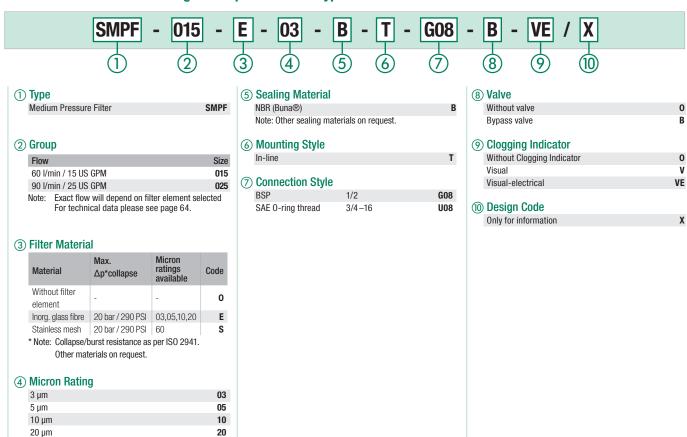
1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Medium Pressure Filters • Type SMPF

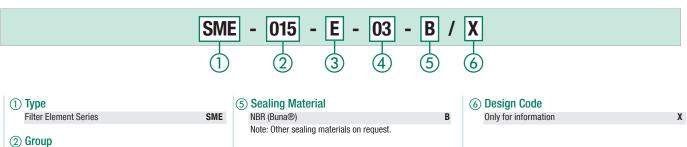
Thread Connection G1	Filter Size SMPF			
Tilleau Collifection d'I	015	025		
Nominal Flow (I/min / US GPM)	60	90		
Notifical Flow (I/IIIII / 03 GFWI)	15	25		
BSP	1/2	1/2		
SAE O-ring thread	3/4–16	3/4–16		
Weight (kg/lb)	0,95	1,25		
Weight (kg/lb)	2.09	2.76		

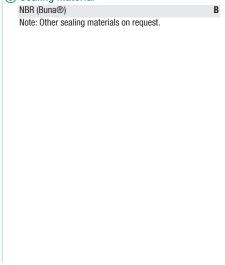
Dimensions (mm/in)	Filter Size SMPF				
Dimensions (mm/in)	015	025			
h1	80	80			
b1	3.15	3.15			
b2	64	64			
UZ	2.52	2.52			
d1	56	56			
uı	2.20	2.20			
40	76,5	76,5			
d2	3.01	3.01			
h1	157	244			
111	6.18	9.61			
ho	79	166			
h2	3.11	6.54			
LO	27	27			
h3	1.06	1.06			
h4	78	78			
114	3.07	3.07			
h5	60	60			
lio	2.36	2.36			
hC	17	17			
h6	.67	.67			
CO	7	7			
G2	.28	.28			


1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Medium Pressure Filter Housings / Complete Filters • Type SMPF


60


Filter Elements • Type SME

Note: Other micron ratings on request.

60 µm

Note: Other micron ratings on request.

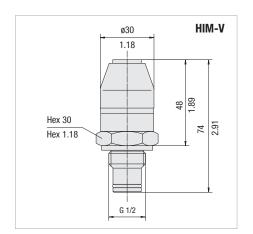
1800-OILSOL 1800-645765

20

60

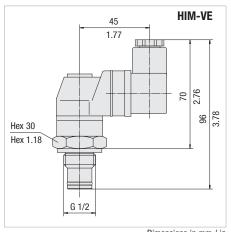
https://oilsolutions.com.au/

sales@oilsolutions.com.au


20 µm

60 µm

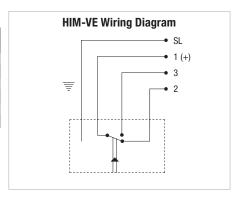
Visual Clogging Indicator


Part number **HIM-V** is a clogging indicator actuated by the differential pressure across the filter element. The actuating pressure of 5 bar / 72.5 PSI allows the clogged element to be changed before the bypass setting of 6 bar / 87 PSI is reached.

Medium Pressure Filters • Type SMPF

Visual-Electrical Clogging Indicator

Part number HIM-VE is used when an electrical signal is needed to indicate when the element needs changing. It is actuated by the differential pressure across the filter element. The actuating pressure of 5 bar / 72.5 PSI allows the clogged element to be changed before the bypass setting of 6 bar / 87 PSI is reached.



Dimensions in mm / in

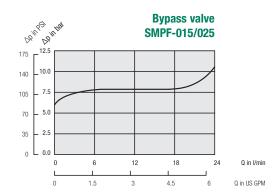
HIM-VE Rated Capacity

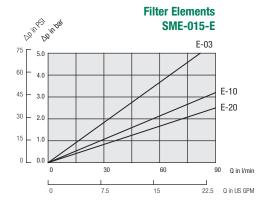
Voltage V	Resistive Load A	Inductive Load A
125 V AC	5	5
250 V AC	5	5
15 V AC	10	10
30 V DC	5	5
50 V DC	1	1
125 V DC	0.50	0.06

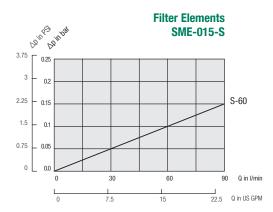
Note: The customer / user carries the responsibility for the electrical connection.

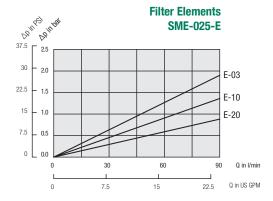
Order Code

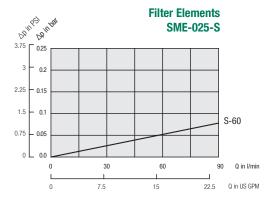
1800-OILSOL 1800-645765


https://oilsolutions.com.au/




Medium Pressure Filters • Type SMPF Flow Characteristics


The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. Contact STAUFF for details.



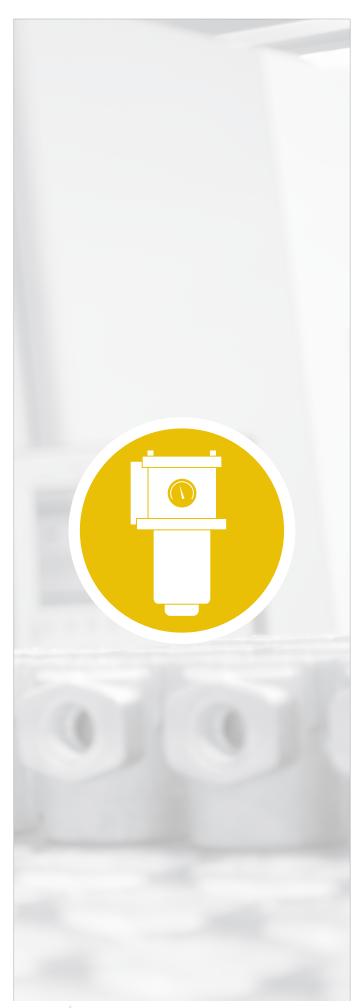
1800-OILSOL

https://oilsolutions.com.au/

Checklist for the selection of filter housings

Please use the following Checklist as a guideline when preparing an enquiry for the selection of filter housings. Scan or copy the page from the catalogue, print and com-

plete it with as much information as possible, before sending it by email or fax to the closest STAUFF branch office.


If possible, please also let us know the quantities required,

and if the enquiry is for a one-time or recurring demand. We look forward to hearing from you, and are always available for consultation, when required.

	Information on the fluid in	ıse				
Type of fluid		Brand		ISO designation		
Fluid viscosity			mm²/sec	cSt		
Fluid temperature	°C	°F		In cold condition		In warm condition
	Information on the filter ho	ueina				
Position in the			!	Debuga line		
hydraulic system	Suction line	Pressure	ine	Return line		
Operating pressure			bar	PSI		
Nominal flow			I/min	US GPM		
/alve	No, not required					
	Yes, the following type:		Bypass valve	Non-return valve	Reverse flow valve	Multi-function valve
Clogging indicator	No, not required					
	Yes, the following type:		Visual	Electrical	Visual-electrical	
Connection type						
and size						
Sealing material	NBR (Buna®)	FKM (Vito	n®)	Other		
	Information on the filter el	ement				
Filter media	Inorganic Glass Fibre		Polyester Fibre	Cellulose Fibre	Stainless Fibre	Stainless Mesh
Micron rating		μm				
Cleanliness level		(to ISO 44	06)			
Information on the						
application						
Information on the						
ambient conditions						
Additional						
Additional information and requirements						
information						
information						
information						
nformation						

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

	Overview Return-Line Filters		68
	RF / RFA / RFB / RFS / RFS-D / RTF / RTF-N Return-Line Filters Max. 16 bar / 232 PSI Max. 500 I/min / 130 US GPM	RF	69 - 76
•	Technical Data / Dimensions		70 - 71
	Order Code - Return-Line Filter		72
	Order Code - Filter Elements		72
	Options - Clogging Indicators		73 - 74
	Flow Characteristics		75 - 76
e	Return-Line Filters Max. 25 bar / 365 PSI Max. 110 I/min / 30 US GPM	RFA	77 - 83
	Technical Data / Dimensions		78 - 79
	Order Code - Return-Line Filter		80
	Order Code - Filter Elements		80
	Options - Clogging Indicators		81 - 82
	Flow Characteristics		83
	Checklist for the selection of filter housing	ngs	84
	Return-Line Filters Max. 10 bar / 145 PSI Max. 185 I/min / 52 US GPM	RFB	85 - 91
W	Technical Data / Dimensions		86 - 87
	Order Code - Return-Line Filter		88
	Order Code - Filter Elements / Air Filter Elem	nents	88
	Options - Clogging Indicators		89 - 90
	Flow Characteristics		91
nu/	ealee@oileolutione.com	n au	

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

	Checklist for the selection of filter housing	s	92		Return-Line Filters Max. 6,9 bar / 100 psi Max. 379 l/min / 100 US GPM	RTF-50	115 - 118
	Return-Line Filters Max. 25 bar / 365 PSI Max. 1135 I/min / 300 US GPM	RFS / RFS-D	93 - 102	Ψ	Technical Data / Dimensions		116 - 117
	Technical Data / Dimensions		94 - 97		Order Code - Return-Line Filter		118
T	Order Code - Return-Line Filter		98		Order Code - Filter Elements		118
	Order Code - Filter Elements		98		Return-Line Filters Max. 10 bar / 145 psi Max. 500 I/min / 132 GPM	RTF-N	119 - 122
	Options - Clogging Indicators		99 - 100		Technical Data / Dimensions		120 - 121
	Flow Characteristics		101 - 102		Order Code - Return-Line Filter		122
	Return-Line Filters Max. 6,9 bar / 100 PSI Max. 95 I/min / 25 US GPM	RTF-10/15/25	103 - 106		Order Code - Filter Elements		122
	Technical Data / Dimensions		104 - 105		Flow Characteristics		123 - 124
	Order Code - Return-Line Filter		106		Options - Clogging Indicators		125
	Order Code - Filter Elements		106				
	Return-Line Filters Max. 6,9 bar / 100 PSI Max. 115 I/min / 30 US GPM	RTF-20	107 - 110				
•	Technical Data / Dimensions		108 - 109				
	Order Code - Return-Line Filter		110				
	Order Code - Filter Elements / Air Filter Eleme	nts	110				
	Return-Line Filters RTF-40 Max. 6,9 bar / 100 psi Max. 378 l/min / 100 US GPM		111 -114				
W	Technical Data / Dimensions		112 - 113				
	Order Code - Return-Line Filter		114				
	Order Code - Filter Elements		114				

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Description

STAUFF Return-Line Filters were designed as filters for tank-top mounting, tank-inside mounting or inline mounting. They filter the hydraulic oil before it flows back into the reservoir. This ensures that contamination arising in the components does not get into the tank. Return-Line filters maintain the targeted purity class like Pressure Filters. However, because of their arrangement, they do not fulfil the additional function of a protection filter. In contrast to a Pressure Filter, it only has to withstand low pressure levels.

The practical design of STAUFF Return-Line Filters enables quick assembly as well as easy exchange of the filter elements.

Media Compatibility

. Mineral oils, others on request

Options and Accessories

• Bypass valve integrated in the filter element (except STAUFF Return-Line Filter RTF)

Clogging Indicators

- On request with visual clogging indicator or electrical clogging switch
- Others on request

Type RF

- Filter bowl with option of thread connection (e.g. STAUFF Diffuser SRV) or leakage oil connection
- Operating pressure: max. 16 bar / 232 PSI
- Nominal flow rate: max. 500 l/min / 130 US GPM
- Materials: Filter head: Aluminium, Filter bowl: PA
- BSP, NPT, SAE thread or Connections:

SAE flange (ISO 6162-1)

Type RFA

- Filter bowl with option of thread connection (e.g. STAUFF Diffuser SRV) or leakage oil connection
- Operating pressure: max. 25 bar / 365 PSI
- Nominal flow rate: max. 110 l/min / 30 US GPM
- Materials: Filter housing: Aluminium
- SAE thread Connection:

Type RFB

- Low weight and compact design
- Filter bowl with option of thread connection
- · Filter head with option of integrated air filter
- Operating pressure: max. 10 bar / 145 PSI
- Nominal flow rate: max. 185 l/min / 52 US GPM
- Filter head: Aluminium. Filter bowl: PA Materials:

Connections: BSP, NPT, SAE thread

Type RFS and RFS-D

- Robust design, suitable for high flow rates
- Filter bowl with option of BSP or SAE flange
- Operating pressure: max. 25 bar / 365 PSI
- Nominal flow rate: max. 1135 I/min / 300 US GPM
- Filter head and bowl: Steel Materials:
- Connections: BSP or SAE flange (ISO 6162-1)

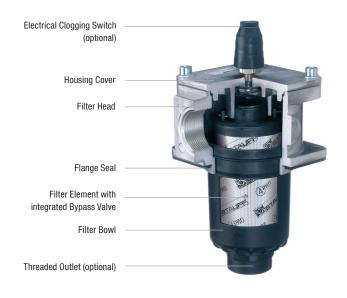
Type RTF

- Filter bowl is designed to return the oil beneath the surface thus preventing entrainment of air
- Filter head with option of integrated air filter
- Operating pressure: max. 10 bar / 49 PSI
- Nominal flow rate: max. 380 I/min / 100 US GPM
- Materials: Filter head: Aluminium, Filter bowl: PA or Steel
- BSP or NPT, others on request Connection:

Type RTF-N

- Return-Line insert filter
- Custom reservoir design with an in-tank filtering system
- Magnetic pre-filtration
- Operating pressure: max. 10 bar / 145 PSI
- Nominal flow rate: max. 500 l/min / 132 US GPM
- Materials: Flange plate: Aluminium,

Magnet rod / Bypass / Diffuser: Steel


1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Return-Line Filters • Type RF

Product Description

STAUFF RF Return-Line Filters are designed as tank top filters. They are mounted directly on the tank top and when 100% of the system's oil is filtered they provide the optimum removal of contaminant from the system. This provides the pump with clean oil thus reducing contaminant generated wear. The filter bowl is designed to return the oil beneath the surface thus preventing the entrainment of air by the returning oil. A high efficiency of contaminant removal is assured by using STAUFF RE Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and as a result reduced maintenance costs.

Technical Data

Construction

■ Tank Top flange mounting

Materials

• Filter head: Aluminium

Filter bowl: Glass Fibre reinforced PolyamideSealings: NBR (Buna-N®)

FKM (Viton®)

EPDM (Ethylene-Propylene-Diene-Monomer-Rubber)

Other sealing materials on request

Port Connections

- BSP
- NPT
- SAE 0-ring thread
- SAE flange 3000 PSI

Operating Pressure

Max. 16 bar / 232 PSI

Temperature Range

■ -10 °C ... +100 °C / +14 °F ... +212 °F

Filter Elements

Specifications see page 72

Media Compatibility

Mineral oils, other fluids on request

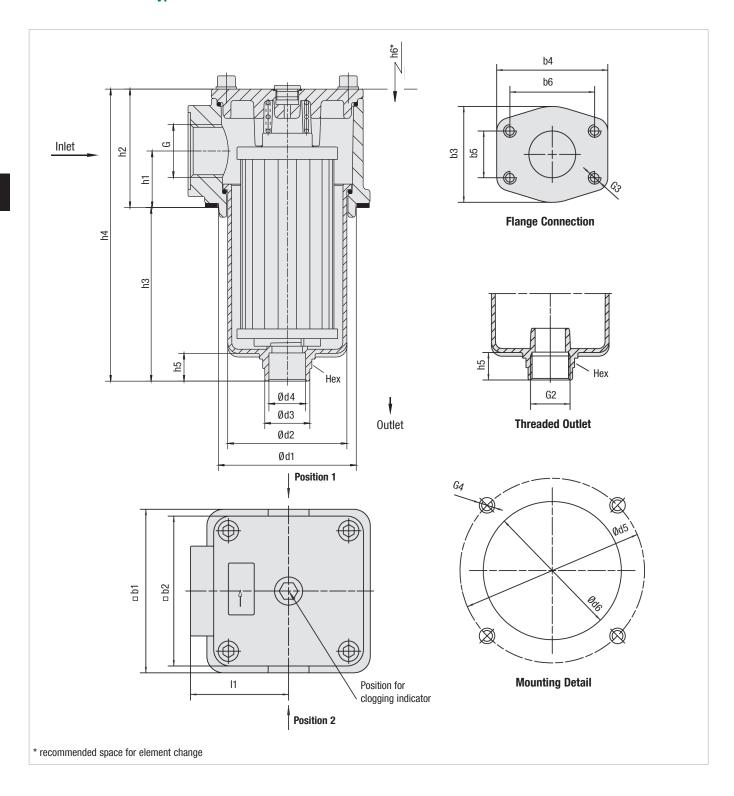
Options and Accessories

Valve

 Bypass valve (integrated in the filter element): Opening pressure 3 bar \pm 0,3 bar / 43.5 PSI \pm 4.35 PSI

grated in the Other settings available on request

Clogging Indicators


• For clogging indicator types please see page 73

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Return-Line Filters • Type RF

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Return-Line Filters • Type RF

Thread Connection C	Filter Size RF	Filter Size RF							
Thread Connection G	014	030	045	070	090	130			
BSP	3/4	1	1-1/4	1-1/2	2	2			
NPT	3/4	1	1-1/4	1-1/2	2	2			
SAE 0-ring Thread	1-1/16-12	1-5/16-12	1-5/8-12	1-7/8-12	1-7/8-12	1-7/8-12			
SAE Flange 3000 PSI	-	-	-	-	2	2			

D	Filter Size RF					
Dimensions (mm/in)	014	030	045	070	090	130
	89	89	120	120	150	150
b1	3.50	3.50	4.72	4.72	5.91	5.91
	80	80	110	110	135	135
b2	3.15	3.15	4.33	4.33	5.31	5.31
					88	88
b3	-	-	-	-	3.47	3.47
					102	102
b4	-	-	-	-	4.02	4.02
					42,9	42,9
b5	-	-	-	-	1.69	1.69
LC					77,8	77,8
b6	-	-	-	-	3.06	3.06
.14	73	73	100	100	126	126
d1	2.87	2.87	3.94	3.94	4.96	4.96
10	57,5	57,5	84	84	112,5	112,5
d2	2.26	2.26	3.31	3.31	4.43	4.43
10	36	36	48	48	54,5	54,5
d3	1.42	1.42	1.89	1.89	2.15	2.15
	17	17	28	28	37,5	37,5
d4	.67	.67	1.1	1.1	1.48	1.48
	100	100	135	135	170	170
d5	3.94	3.94	5.31	5.31	6.69	6.69
10	78	78	105	105	131	131
d6	3.07	3.07	4.13	4.13	5.16	5.16
	33	33	41	41	47	47
h1	1.30	1.30	1.61	1.61	1.85	1.85
	66	66	86	86	98	98
h2	2.60	2.60	3.39	3.39	3.86	3.86
	91,5	159,5	119	180	172,5	252,5
h3	3.60	6.28	4.69	7.09	6.79	9.94
t. 4	157,5	225,5	206	267	273,5	353,5
h4	6.20	8.88	8.11	10.51	10.77	13.91
l. F	23,5	23,5	24	24	27	27
h5	.93	.93	.95	.95	1.06	1.06
LC.	140	210	180	240	235	315
h6	5.51	8.27	7.09	9.45	9.25	12.40
	48	48	66	66	85	85
l1	1.89	1.89	2.60	2.60	3.35	3.35
00	G1 or	G1 or	G1-1/4 or	G1-1/4 or	G1-1/2 or	G1-1/2 or
G2	1 NPT	1 NPT	1-1/4 NPT	1-1/4 NPT	1-1/2 NPT	1-1/2 NPT
G3	-	-	-	-	M12x15	M12x15
G4	M6 or	M6 or	M8 or	M8 or	M10 or	M10 or
	1/4–20 UNC	1/4–20 UNC	5/16–18 UNC	5/16–18 UNC	3/8–16 UNC	3/8–16 UNC
Hex	36	36	50	50	55	55
	1.42	1.42	1.97	1.97	2.16	2.16

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Return-Line Filter Housings / Complete Filters • Type RF

500 I/min / 130 US GPM 130 Note: Exact flow will depend on the selected filter element. For technical data please see pages 75 / 76.

3 Filter Material

160 I/min / 45 US GPM

240 I/min / 70 US GPM

330 I/min / 90 US GPM

	Material	max. Δp*collapse	Micron ratings available	Code
	Without filter element	-	-	0
	Inorg. glass fibre	25 bar / 363 PSI	3, 5, 10, 20	G
	Stainless fibre	30 bar / 435 PSI	0, 0, 10, 20	Α
	Filter paper	10 bar / 145 PSI	10, 20	N
	Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	s

Note: *Collapse/burst resistance as per ISO 2941. Other materials on request.

(4) Micron Rating

シ	moron name	
	3 μm	03
	5 μm	05
	10 μm	10
	20 μm	20
	25 μm	25
	50 μm	50
	100 μm	100
	200 μm	200
	Note: Other micron ratings on request.	

5 Sealing Materials

NBR (Buna®)	В
FKM (Viton®)	۷
EPDM	E
Note: Other sealing materials on request	

Outlet Style

Size	Connection thread	Code
all	Without thread (Standard outlet)	0
014 / 030	1" BSP / 1" NPT	G16 / N16
045 / 070	1 1/4 BSP / 1 1/4 NPT	G20 / N20
90 / 130	1 1/2 BSP / 1 1/2 NPT	G24 / N24

6 Connection Style

045

070

090

Connection Style	Thread Style	Group 014	Code	Group 030	Code	Group 045	Code	Group 070	Code	Group 090	Code	Group 130	Code
BSP	-	3/4	G12	1	G16	1-1/4	G20	1-1/2	G24	2	G32	2	G32
BSP	-	1/2	G08	1/2	G08	1-1/2	G24	1-1/4	G20	1-1/4	G20	1-1/4	G20
BSP	-	1	G16	3/4	G12	-	-	-	-	1-1/2	G24	1-1/2	G24
NPT	-	3/4	N12	1	N16	1-1/4	N20	1-1/2	N24	2	N32	2	N32
NPT	-	1	N16	3/4	N12	1-1/2	N24	1-1/4	N20	1-1/2	N24	1-1/2	N24
SAE O-ring Thread	-	1-1/16	U12	1-5/16	U16	1-5/8	U20	1-7/8	U24	1-7/8	U24	1-7/8	U24
SAE O-ring Thread	-	1-5/16	U16	1-1/16	U12	1-7/8	U24	1-5/8	U20	1-5/8	U20	1-5/8	U20
SAE Flange 3000 PSI	metric	-	-	-	-	-	-	-	-	2	C332M	2	C332M
SAE Flange 3000 PSI	UNC	-		-	-	-	-	-	-	2	C332U	2	C332U

Note: Bold types identify preferred connection styles.

(7) Clogging Indicator

Without Clogging Indicator	0
Visual Clogging Indicator	V
Electrical Clogging Switch 42 V, NO	G42N0
Electrical Clogging Switch 42 V, NC	G42NC
Electrical Clogging Switch 110 V 230 V,	G230
two-way contact (only for Code W)	uzsu

® Option Clogging Indicator G42NO, G42NC and G230

Plug connector	0
M12 x 1,5	M12
AMP plug	Α
Deutsch plug	D
Rubber boot	S
90 degree Polyamide cap (only for Code G230)	W

10 Additional Features

	Pos	ition*	
Without leakage oil connection	-		none
Leakage oil connection	1	2	L

Note: *Position of the leakage oil connection see page 70. Without any code: assembly in the middle of the filter cover.

11 Design Code

Only for information

Filter Elements • Type RE

RE

Filter Element Series

2 Group

According to filter housing

(3) Filter Material

_				
	Material	Max. Δp*collapse	Micron ratings available	Code
	Inorg. glass fibre	25 bar / 363 PSI	3, 5, 10, 20	G
	Stainless fibre	30 bar / 435 PSI	3, 3, 10, 20	Α
	Filter paper	10 bar / 145 PSI	10, 20	N
	Stainless mesh	30 bar / 435 PSI	25, 50,	S
			100, 200	_

Note: *Collapse/burst resistance as per ISO 2941. Other materials on request.

4 Micron Rating

3 µm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200
Note: Other micron ratings on request.	

5 Sealing Materials

NBR (Buna®)	В
FKM (Viton®)	٧
EPDM	E
Note: Other sealing materials on request.	

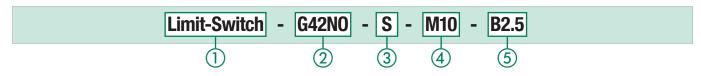
(6) Design Code

Only for information

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Electrical Clogging Switch


The switch is used where an electrical signal is needed to indicate when the element needs to be changed. The switch can turn on a light, or shut the machine down, or any further function controlled by an electric signal. The switching pressure is 2,5 bar / 36.25 PSI and this allows the element to be changed before the bypass setting of 3 bar / 43.5 PSI is reached.

Standard type with plug connector and rubber cap. Available with DEUTSCH DT04-2P plug (industrial standard), AMP Junior Timer plug (industrial standard) and five-pin circular connector M12, A-coded, according to IEC 61076-2-101.

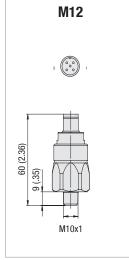
Technical Data

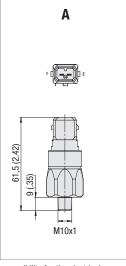
	Limit-Switch G42N0+NC	Limit-Switch G230	
Switching Capacity	100 VA	1000 VA	
Voltage	1042 VAC	10250 VAC	
Current	10m	A4A	
Switching Accuracy	± 0,5 bar at room temp. and new state		
Switching Frequency	200	D/min	
max. Pressure Ramp Rate	≤ 1 bar/ms		
Degree of Protection	IP65 (plug type S and W), IP67 (plug type M12, A, D)		
Temperature Range	-30°C +100°C	-40°C +100°C	

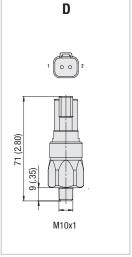
Order Code

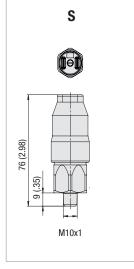
Limit-Switch

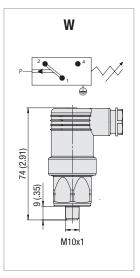
1) Type


2 Connector Type


Electrical Clogging Switch 42 V, NO G42N0 Electrical Clogging Switch 42 V, NC G42NC Electrical Clogging Switch 110 V ... 230 V, G230 two-way contact (only for Plug Type W)


③ Plug Type M12 Five-Pin Connector according to IEC 61076-2-101 M12 AMP-Junior-Timer Plug DEUTSCH Plug DT04-2P D Rubber boot S 90 degree Polyamide cap W (only for Connector Type G230)


4 Thread Type M10 x 1 M10 **⑤ Pressure Setting** B2.5 2,5 bar / 36.3 PSI


Dimensions Plug Type

Note: The customer / user carries the responsibility for the electrical connection.

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

sales@oilsolutions.com.au

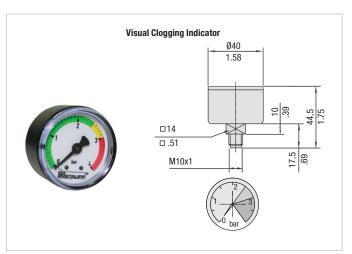
Dimensional drawings: All dimensions in mm/in.

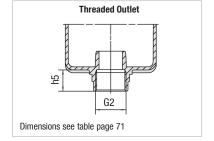
Visual Clogging Indicator

The gauge visually displays the degree of contamination of the element. The colored segments allow quick visual checking.

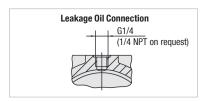
green $0 \dots 2,5 \text{ bar} / 0 \dots 36.25 \text{ PSI}$ Element has service life left

yellow $2,5 \dots 3,0$ bar / $36.25 \dots 43.5$ PSI Element is contaminated and should be changed red >3,0 bar / >43.5 PSI Bypass valve open, unfiltered oil passing to tank


Order Codes


Visual Clogging Indicator

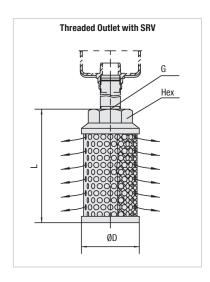
SPG-C-040-00004-02-P-M10-402922


Filter Bowl with Threaded Connection

Under some circumstances such as a tall reservoir or one with oil levels which vary greatly during operation, it is necessary to extend the filter bowl so that the returning oil returns beneath the surface and does not entrain air in the process. The optional bowl with a female thread allows an extension to be fitted quite simply.

Leakage Oil Connection

Seal or case drain lines can be connected to the filter through either of the clogging indicator ports providing that the leakage oil can accept a pressure of 3 bar / 43.5 PSI. It ensures that no unfiltered oil can return to the reservoir.

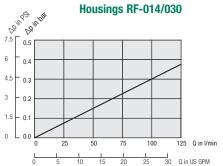


Filter Bowl with Threaded Connection and Diffuser

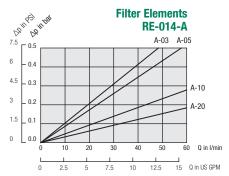
Diffusers mounted to the filter bowl minimise foaming and reduce noise of high Return-Line flows. For further details on STAUFF Diffusers please refer to the Calatogue No. 10 - Hydraulic Accessories.

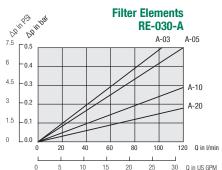
Attention: Connection pipe not included in scope of delivery!

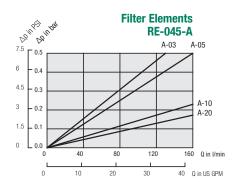
Size SRV for Return-Line Filter Size	for Return-Line	Dimensions (mm/in)			
	Filter Size	øD	L	Thread G	Hex
SRV-114-G16	RF-014/030	60	139	G1	46
SRV-114-N16	KF-014/030	2.36	5.47	1 NPT	1.81
SRV-200-G20	DE 0.45/070	82	139	G1-1/4	60
SRV-200-N20	RF-045/070	3.23	5.47	1-1/4 NPT	2.36
SRV-227-G24	DE 000/400	82	200	G1-1/2	60
SRV-227-N24	RF-090/130	3.23	7.87	1-1/2 NPT	2.36

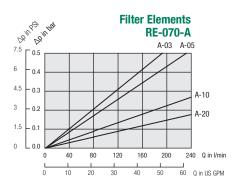

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

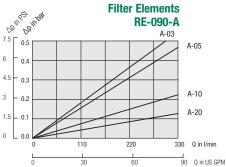


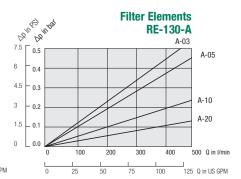

Return-Line Filters • Type RF Flow Characteristics

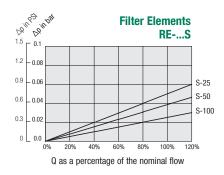

The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Contact STAUFF for details.

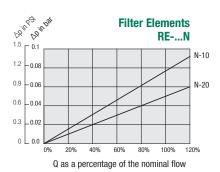


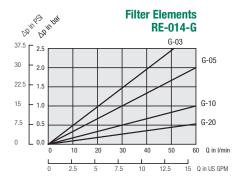


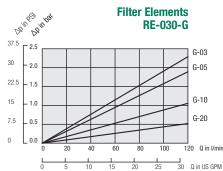


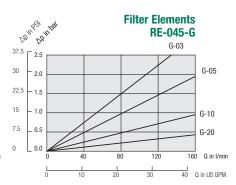


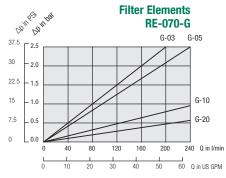


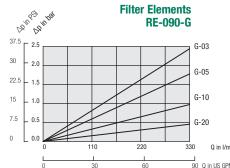


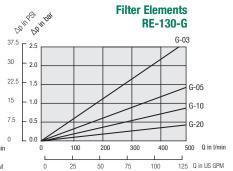



1800-OILSOL 1800-645765 https://oilsolutions.com.au/




Return-Line Filters • Type RF Flow Characteristics


The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Contact STAUFF for details.



1800-OILSOL

https://oilsolutions.com.au/

Product Description

STAUFF RFA Return-Line Filters are a one piece design and can be used as a tank top or an in-line filter. They are mounted in the Return-Line and if 100% of the system oil is filtered, provide the optimum removal of contaminant for the systems. This provides the pump with clean oil, thus reducing contaminant generated wear. A high efficiency of contaminant removal is assured by using STAUFF RE Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and as a result reduced maintenance costs. Furthermore, this housing also offers the possibility of pipeline mounting.

Technical Data

Construction

■ Tank Top or in-line mounting

Materials

Filter housing: Aluminium
 Sealings: NBR (Buna-N®)
 FKM (Viton®)

EPDM (Ethylene Propylene Diene Monomer Rubber)

Other sealing materials on request

Port Connections

- SAE 0-ring thread
- BSP

Operating Pressure

■ Max. 25 bar / 365 PSI

Temperature Range

■ -10 °C ... +100 °C / +14 °F ... +212 °F

Filter Elements • Specifications see page 80

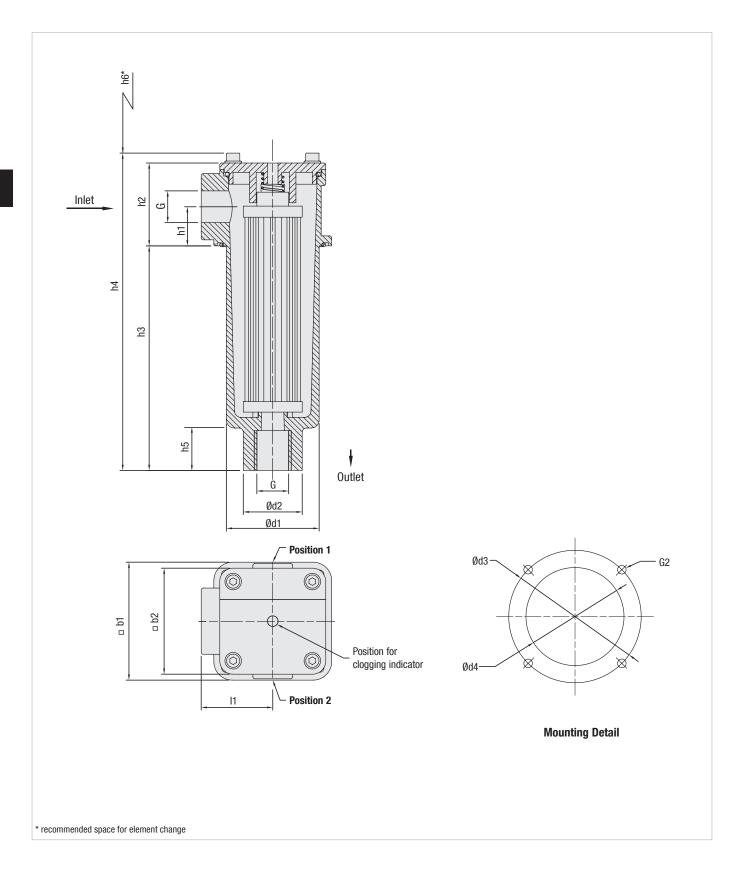
Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

Valve

 Bypass valve (integrated in the filter element) Opening pressure 3 bar \pm 0,3 bar / 43.5 PSI \pm 4.35 PSI Other settings available on request


Clogging Indicators

For clogging indicator types please see page 81

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Thread Connection G	Filter Size RFA-030
SAE 0-ring Thread U12	1-1/16–12
SAE 0-ring Thread U08	3/4–16
BSP G08	1/2
BSP G12	3/4

Dimensions (mm/in)	Filter Size RFA-030
h1	29,5
	1.16
h2	62,5
112	2.46
h3	163,5
110	6.44
h4	233,5
114	9.19
h5	28
	1.10
h6	210
	8.27
b1	89
	3.50
b2	80
	3.15
d1	70
	2.76
d2	44,5
	1.75
d3	100
	3.94
d4	74
	2.91
l1	54
**	2.16
G2	M6 or 1/4 UNC

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Return-Line Filter Housings / Complete Filters • Type RFA

1) Type Return-Line Filter RFA ② Group

Size 110 I/min / 30 US GPM 030 Note: Exact flow will depend on the selected filter element. For technical data please see page 83.

(3) Filter Material

Material	Max. Δp*collapse	Micron ratings available	Code
Without filter element	-	-	0
Inorg. glass fibre Stainless fibre	25 bar / 363 PSI 30 bar / 435 PSI	3, 5, 10, 20	G A
Filter paper	10 bar / 145 PSI	10, 20	N
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	В, S

Note: *Collapse/burst resistance as per ISO 2941. Other materials on request.

(4) Micron Rating

Micron namy	
3 μm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200
Note: Other micron ratings on request.	

5 Sealing Material

NBR (Buna®)	В
FKM (Viton®)	V
EPDM	E
Note: Other sealing materials on request	

(6) Connection Style

Connection Style	Thread	Code
SAE-O-ring Thread	1-1/16-12	U12
SAE-O-ring Thread	3/4-16	U08
BSP	1/2	G08
BSP	3/4	G12

7 Clogging Indicator

Without Clogging Indicator	0
Visual Clogging Indicator	V
Electrical Clogging Switch 42 V, NO	G42N0
Electrical Clogging Switch 42 V, NC	G42NC
Electrical Clogging Switch 230 V, two-way contact (only for Code W)	G230

(8) Option Clogging Indicator G42NO, G42NC and G230

Plug connector	0
M12 x 1,5	M12
AMP plug	Α
Deutsch plug	D
Rubber boot	S
90 degree Polyamide cap (only for Code G230)	W

Outlet Style

Connection Style	Thread	Code
	Without thread (Standard outlet)	0
SAE-O-Ring Thread	1-1/16-12	U12
SAE-O-Ring Thread	3/4-16	80U
BSP	1/2	G08
BSP	3/4	G12

10 Additional Features

	Po	osition*	
Without leakage oil connection	-		none
Leakage oil connection	1	2	L1

Note: *Position of the leakage oil connection see page 78. Without any code: assembly in the middle of the filter cover.

(11) Design Code

Only for information

Filter Elements • Type RE

Filter Element Series

(2) Group According to filter housing

(3) Filter Material

Material	Max. Δp*collapse	Micron ratings available	Code
Inorg. glass fibre	25 bar / 363 PSI	3, 5, 10, 20	G
Stainless fibre	30 bar / 435 PSI	3, 3, 10, 20	Α
Filter paper	10 bar / 145 PSI	10, 20	N
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	В, S

Note: *Collapse/burst resistance as per ISO 2941. Other materials on request.

(4) Micron Rating

3 μm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200
Note: Other micron ratings on request.	

(5) Sealing Materials

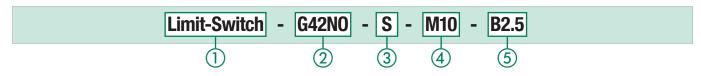
NBR (Buna®)	В
FKM (Viton®)	۷
EPDM	E
Note: Other sealing materials on request.	

6 Design Code Only for information

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Electrical Clogging Switch


The switch is used where an electrical signal is needed to indicate when the element needs to be changed. The switch can turn on a light, or shut the machine down, or any further function controlled by an electric signal. The switching pressure is 2,5 bar / 36.25 PSI and this allows the element to be changed before the bypass setting of 3 bar / 43.5 PSI is reached.

Standard type with plug connector and rubber cap. Available with DEUTSCH DT04-2P plug (industrial standard), AMP Junior Timer plug (industrial standard) and five-pin circular connector M12, A-coded, according to IEC 61076-2-101.

Technical Data

	Limit-Switch G42N0+NC	Limit-Switch G230		
Switching Capacity	100 VA	1000 VA		
Voltage	1042 VAC 10250 VAC			
Current	10mA4A			
Switching Accuracy	± 0,5 bar at room temp. and new state			
Switching Frequency	200/min			
max. Pressure Ramp Rate	≤ 1 bar/ms			
Degree of Protection	IP65 (plug type S and W), IP67 (plug type M12, A, D)			
Temperature Range	-30°C +100°C	-40°C +100°C		

Order Code

Limit-Switch

1) Type

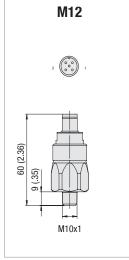
3 Plug Type M12 Five-Pin

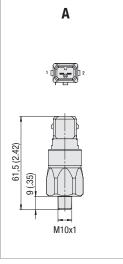
M12 Five-Pin Connector according to IEC 61076-2-101

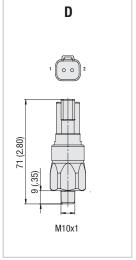
AMP-Junior-Timer Plug

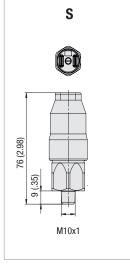
DEUTSCH Plug DT04-2P

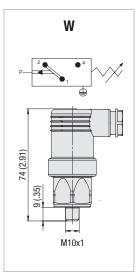
Rubber boot


90 degree Polyamide cap
(only for Connector Type G230)


4 Thread Type


M10 x 1 M10


⑤ Pressure Setting
2,5 bar / 36.3 PSI B2.5


Dimensions Plug Type

Note: The customer / user carries the responsibility for the electrical connection.

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

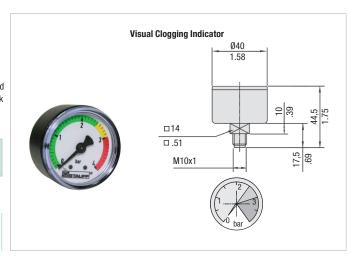
Visual Clogging Indicator

The gauge visually displays the degree of contamination of the element. The colored segments allow quick visual checking.

0 ... 2,5 bar / 0 ... 36.25 PSI Flement has service life left areen

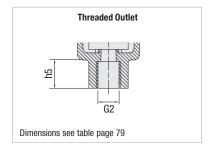
yellow 2,5 ... 3,0 bar / 36.25 ... 43.5 PSI Element is contaminated and should be changed >3,0 bar / >43.5 PSI Bypass valve open, unfiltered oil passing to tank

Order Codes

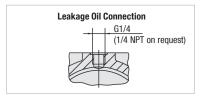


1) Type

Visual Clogging Indicator

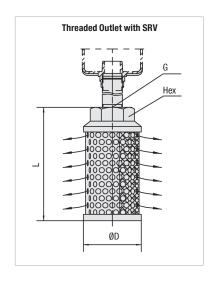

SPG-C-040-00004-02-P-M10-402922

Filter Bowl with Threaded Connection


Under some circumstances such as a tall reservoir or one with oil levels which vary greatly during operation, it is necessary to extend the filter bowl so that the returning oil returns beneath the surface and does not entrain air in the process. The optional bowl with a female thread allows an extension to be fitted quite simply.

The one piece design also allows for inline applications.

Leakage Oil Connection


Seal or case drain lines can be connected to the filter through either of the clogging indicator ports providing that the leakage oil can accept a pressure of 3 bar / 43.5 PSI. It ensures that no unfiltered oil can return to the reservoir.

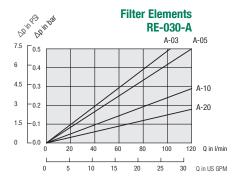
Filter Bowl with Threaded Connection and Diffuser

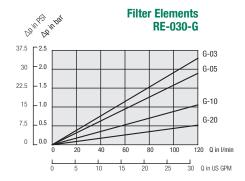
Diffusers mounted to the filter bowl minimise foaming and reduce noise of high Return-Line flows. For further details on STAUFF Diffusers please refer to the Catalogue No. 10 - Hydraulic Accessories. Attention: Connection pipe not included in scope of delivery!

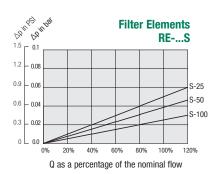
Size SRV	for Return-Line	Dimensions (mm/in)				
	Filter Size	øD	L	Thread G	Hex	
SRV-050-G12	RFA-030	62	109	G3/4	36	
SRV-050-N12	MFA-030	2.44	4.29	3/4 NPT	1.42	

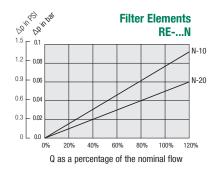
1800-OILSOL 1800-645765

https://oilsolutions.com.au/






Return-Line Filters • Type RFA Flow Characteristics


The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Contact STAUFF for details.

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Checklist for the selection of filter housings

Please use the following Checklist as a guideline when preparing an enquiry for the selection of filter housings. Scan or copy the page from the catalogue, print and complete it with as much information as possible, before sending it by email or fax to the closest STAUFF branch office. If possible, please also let us know the quantities required,

and if the enquiry is for a one-time or recurring demand. We look forward to hearing from you, and are always $% \left\{ 1\right\} =\left\{ 1\right\}$ available for consultation, when required.

	Information on the fluid in	1 1100				
Type of fluid	information on the nata in	Brand		ISO designation		
Fluid viscosity		Drana.	mm²/sec	cSt		
Fluid temperature	°C	°F		In cold condition		In warm condition
	Information on the filter I	nousing				
Position in the hydraulic system	Suction line	Pressure	line	Return line		
Operating pressure			bar	PSI		
Nominal flow			I/min	US GPM		
Valve	No, not required					
	Yes, the following type:		Bypass valve	Non-return valve	Reverse flow valve	Multi-function valve
Clogging indicator	No, not required					
	Yes, the following type:		Visual	Electrical	Visual-electrical	
Connection type and size						
Sealing material	NBR (Buna®)	FKM (Vito	on®)	Other		
	Information on the filter o	element				
Filter media	Inorganic Glass Fibre		Polyester Fibre	Cellulose Fibre	Stainless Fibre	Stainless Mesh
Micron rating		μm				
Cleanliness level		(to ISO 44	406)			
Information on the						
application						
Information on the						
ambient conditions						
Additional information and requirements						
and royallollionto						

1800-OILSOL

https://oilsolutions.com.au/

Product Description

STAUFF RFB Return-Line Filters are designed as tank top filters. They are mounted directly on the tank top and if 100% of the system oil is filtered they provide the optimum removal of contaminant from the system. This provides the pump with clean oil thus reducing contaminant generated wear. Because of it's low weight and compact design, the STAUFF RFB Filters are ideally suited for mobile hydraulic applications. A high efficiency of contaminant removal is assured by using STAUFF RE Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and as a result reduced maintenance costs.

Technical Data

Construction

Tank Top flange mounting

Materials

• Filter head: Aluminium

Filter bowl & cap: Glass Fibre Reinforced Polyamide

Sealings: NBR (Buna-N®)

FKM (Viton®)

EPDM (Ethylene Propylene Diene Monomer Rubber)

Other sealing materials on request

Port Connections

- BSP
- NPT ■ SAE 0-ring thread

Operating Pressure

Max. 10 bar / 145 PSI

Temperature Range

■ -10 °C ... +100 °C / +14 °F ... +212 °F

Filter Elements

■ Specifications see page 88

Media Compatibility

. Mineral oils, other fluids on request

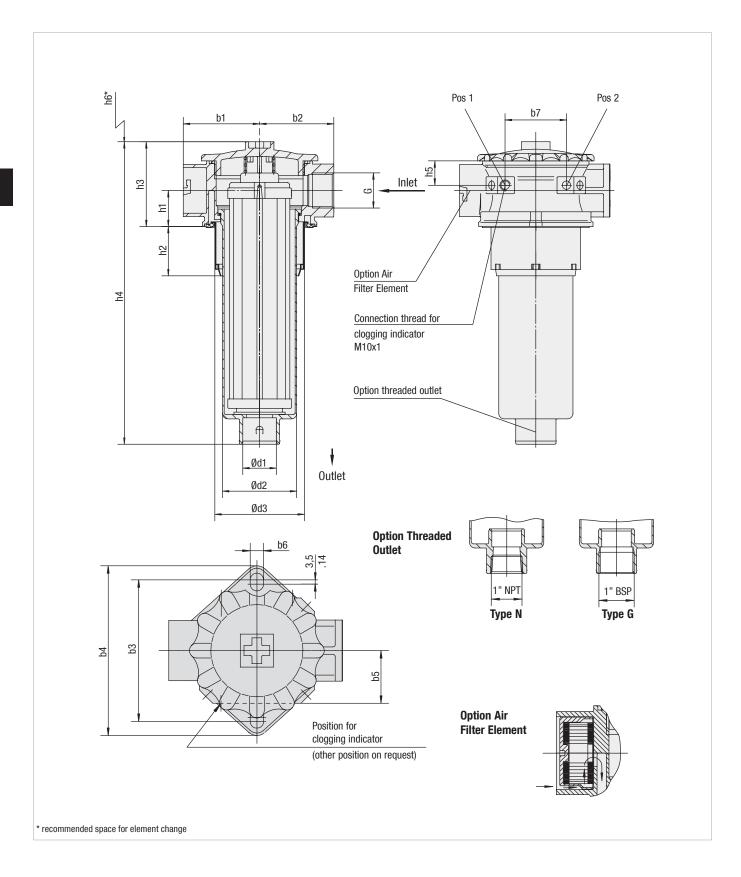
Options and Accessories

Valve

 Bypass valve (integrated in the filter element)

Opening pressure 3 bar \pm 0,3 bar / 43.5 PSI \pm 4.35 PSI Other settings available on request

Clogging Indicators


• For clogging indicator types please see page 89

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Thread Connection G	Filter Size RFB					
Tilleau Collilection d	022		046		052	
BSP	3/4	1	3/4	1	3/4	1
NPT	3/4	1	3/4	1	3/4	1
SAE 0-ring Thread	1-5/16–12					

Dimensions (mm/in)	Filter Size RFB					
Dimensions (mm/in)	022	046	052			
Ld	34	34	34			
h1	1.34	1.34	1.34			
LO	46,5	46,5	46,5			
h2	1.83	1.83	1.83			
LO.	80	80	80			
h3	3.15	3.15	3.15			
h.4	205,5	285,5	351,5			
h4	8.09	11.24	13.84			
hE.	23	23	23			
h5	.91	.91	.91			
h6	154	239	305			
110	6.26	9.41	12.01			
d1	32	32	32			
ui	1.26	1.26	1.26			
d2	70	70	70			
uz	2.76	2.76	2.76			
d3	84,5	84,5	84,5			
นอ	3.33	3.33	3.33			
b1	72	72	72			
υı	2.84	2.84	2.84			
b2	70	70	70			
UZ	2.76	2.76	2.76			
b3	115,5	115,5	115,5			
ມວ	4.55	4.55	4.55			
b4	138,5	138,5	138,5			
U4	5.45	5.45	5.45			
b5	43	43	43			
DJ.	1.69	1.69	1.69			
b6	11	11	11			
DO .	.43	.43	.43			
b7	58	58	58			
U/	2.28	2.28	2.28			

Return-Line Filter Housings / Complete Filters - Type RFB

185 I/min / 52 US GPM 052
Note: Exact flow will depend on the selected filter element.
For technical data please see page 91.

(3) Filter Material

75 I/min / 22 US GPM

165 I/min / 46 US GPM

	Material	Max. Δp*collapse	Micron ratings available	Code
	Without filter element	-	-	0
	Inorg. glass fibre	25 bar / 363 PSI	3, 5, 10, 20	G
	Stainless fibre	30 bar / 435 PSI	3, 3, 10, 20	M
	Filter paper	10 bar / 145 PSI	10, 20	N
	Stainless mesh	30 bar / 435 PSI	10, 25, 50, 100, 200	S

Note: *Collapse/burst resistance as per ISO 2941.
Other materials on request.

	Micro	n Rating
(+)	MILOLO	ii iiuuiii

022

046

3 μm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200
Note: Other micron ratings on request.	

(5) Sealing Material

NBR (Buna®)	В
FKM (Viton®)	V
EPDM	E
Note: Other sealing materials on request.	

6 Connection Style

	Connection Style	Code	
	BSP	1	G16
	BSP	3/4	G12
	NPT	1	N16
	NPT	3/4	N12
	SAE-O-ring Thread	1-5/16-12	U16
	Note: Bold types ide	entify preferred connection	style

7 Clogging Indicator

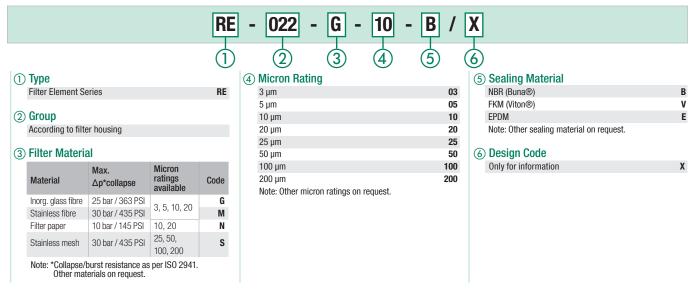
0	Without Clogging Indicator	
V	Visual Clogging Indicator	
G42N0	Electrical Clogging Switch 42 V, NO	
G42NC	Electrical Clogging Switch 42 V, NC	
G230	Electrical Clogging Switch 110 V 230 V, two-way contact (only for Code W)	

(8) Option Clogging Indicator G42NO, G42NC and G230

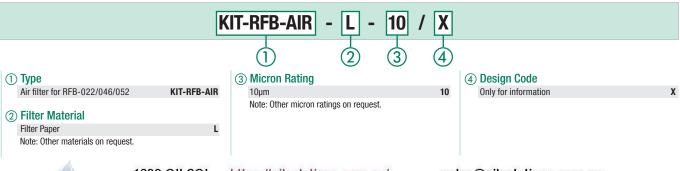
Plug connector	0
M12 x 1,5	M12
AMP plug	Α
Deutsch plug	D
Rubber boot	S
90 degree Polyamide cap (only for Code G230)	W

(9) Outlet Style

With 1" BSP thread	G16
With 1" NPT thread	N16


(10) Air Filter Element

Without Air Filter Element	none
Filter paper 10 micron	L10
Note: Other materials and micron ratings on re	equest.


11) Design Code

Only for information X

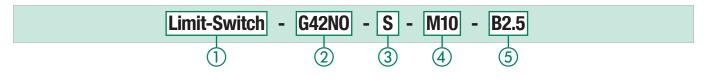
Filter Elements • Type RE

Air Filter Element

OIL SOLUTIONS

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Electrical Clogging Switch


The switch is used where an electrical signal is needed to indicate when the element needs to be changed. The switch can turn on a light, or shut the machine down, or any further function controlled by an electric signal. The switching pressure is 2,5 bar / 36.25 PSI and this allows the element to be changed before the bypass setting of 3 bar / 43.5 PSI is reached.

Standard type with plug connector and rubber cap. Available with DEUTSCH DT04-2P plug (industrial standard), AMP Junior Timer plug (industrial standard) and five-pin circular connector M12, A-coded, according to IEC 61076-2-101.

Technical Data

	Limit-Switch G42N0+NC	Limit-Switch G230				
Switching Capacity	100 VA	1000 VA				
Voltage	1042 VAC	10250 VAC				
Current	10mA4A					
Switching Accuracy	\pm 0,5 bar at room temp. and new state					
Switching Frequency	200/min					
max. Pressure Ramp Rate	≤ 1 bar/ms					
Degree of Protection	IP65 (plug type S and W), IP67 (plug type M12, A, D)					
Temperature Range	-30°C +100°C	-40°C +100°C				

Order Code

Limit-Switch

1) Type

② Connector Type

Electrical Clogging Switch 42 V, NO G42NO
Electrical Clogging Switch 42 V, NC G42NC
Electrical Clogging Switch 110 V ... 230 V,
two-way contact (only for Plug Type W)

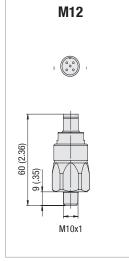
G230

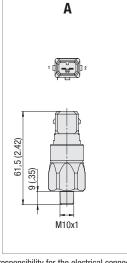
 M12 Five-Pin Connector according to IEC 61076-2-101
 M12

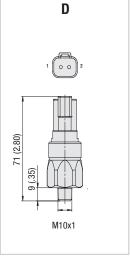
 AMP-Junior-Timer Plug
 A

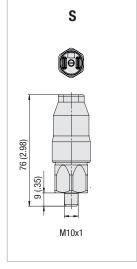
 DEUTSCH Plug DT04-2P
 D

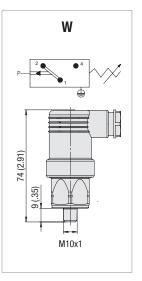
 Rubber boot
 S


 90 degree Polyamide cap
 W


(only for Connector Type G230)


4 Thread Type
M10 x 1 M10


5 Pressure Setting
2,5 bar / 36.3 PSI B2.5


Dimensions Plug Type

Note: The customer / user carries the responsibility for the electrical connection.

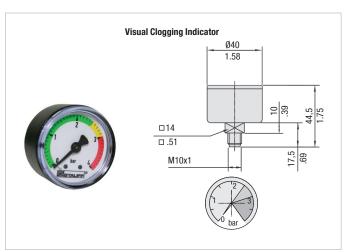
1800-OILSOL 1800-645765 https://oilsolutions.com.au/

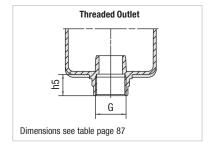
Visual Clogging Indicator

The gauge visually displays the degree of contamination of the element. The colored segments allow quick visual checking.

0 ... 2,5 bar / 0 ... 36.25 PSI Flement has service life left areen

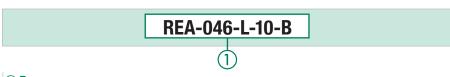
yellow 2,5 ... 3,0 bar / 36.25 ... 43.5 PSI Element is contaminated and should be changed >3,0 bar / >43.5 PSI Bypass valve open, unfiltered oil passing to tank


Order Codes


Visual Clogging Indicator

SPG-C-040-00004-02-P-M10-402922

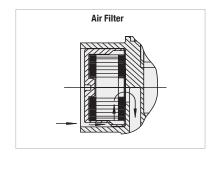
Filter Bowl with Threaded Connection

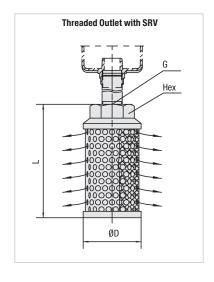

Under some circumstances such as a tall reservoir or one with oil levels which vary greatly during operation, it is necessary to extend the filter bowl so that the returning oil returns beneath the surface and does not entrain air in the process. The bowl with a female thread allows an extension to be fitted quite simply.

Air Filter Element

Allows an effective filtration of the incoming air which avoids the infiltration of dirt particles into the hydraulic system. The standard air filter element is a 10 micron cellulose; other materials and micron ratings on request.

Order Code


Air Filter Element


REA-046-L-10-B

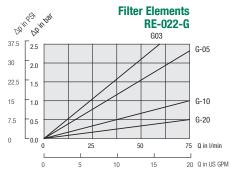
Filter Bowl with Threaded Connection and Diffuser

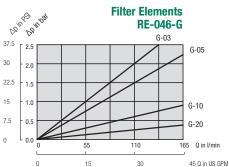
Diffusers mounted to the filter bowl minimise foaming and reduce noise of high Return-Line flows. For further details on STAUFF Diffusers please refer to the Catalogue No. 10 - Hydraulic Accessories. Attention: Connection pipe not included in scope of delivery!

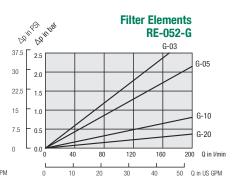
Size SRV	for Return-Line	Dimensions (mm/in)					
SIZE SNV	Filter Size	øD	L	Thread G	Hex		
SRV-114-G16	RER_022/046/052	60	139	G1	46		
SRV-114-N16		2.36	5.47	1 NPT	1.81		

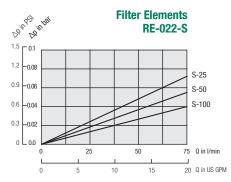
1800-OILSOL

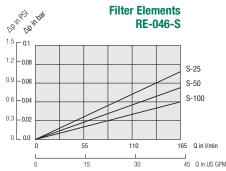
https://oilsolutions.com.au/

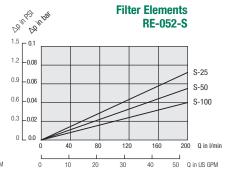


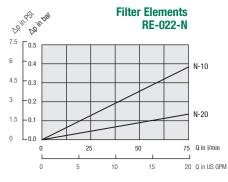


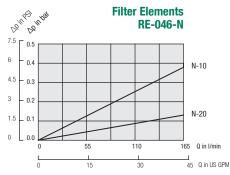

Return-Line Filters • Type RFB Flow Characteristics

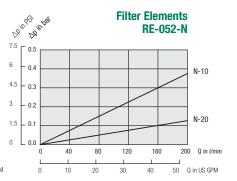

The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Contact STAUFF for details.











1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Checklist for the selection of filter housings

Please use the following Checklist as a guideline when preparing an enquiry for the selection of filter housings. Scan or copy the page from the catalogue, print and complete it with as much information as possible, before sending it by email or fax to the closest STAUFF branch office. If possible, please also let us know the quantities required,

and if the enquiry is for a one-time or recurring demand. We look forward to hearing from you, and are always $% \left\{ 1\right\} =\left\{ 1\right\}$ available for consultation, when required.

	Information on the fluid in	1 1100				
Type of fluid	information on the nata in	Brand		ISO designation		
Fluid viscosity		Drana.	mm²/sec	cSt		
Fluid temperature	°C	°F		In cold condition		In warm condition
	Information on the filter I	nousing				
Position in the hydraulic system	Suction line	Pressure	line	Return line		
Operating pressure			bar	PSI		
Nominal flow			I/min	US GPM		
Valve	No, not required					
	Yes, the following type:		Bypass valve	Non-return valve	Reverse flow valve	Multi-function valve
Clogging indicator	No, not required					
	Yes, the following type:		Visual	Electrical	Visual-electrical	
Connection type and size						
Sealing material	NBR (Buna®)	FKM (Vito	on®)	Other		
	Information on the filter o	element				
Filter media	Inorganic Glass Fibre		Polyester Fibre	Cellulose Fibre	Stainless Fibre	Stainless Mesh
Micron rating		μm				
Cleanliness level		(to ISO 44	406)			
Information on the						
application						
Information on the						
ambient conditions						
Additional information and requirements						
and royallollionto						

1800-OILSOL

https://oilsolutions.com.au/

Return-Line Filters • Type RFS / RFS-D

Product Description

STAUFF RFS and RFS-D Carbon Steel Return-Line Filters are designed as tank top or in-line filters. They are mounted directly on the tank top and if 100% of the system oil is filtered, they provide the optimum removal of contaminants from the system. This provides the pump with clean oil thus reducing contaminant generated wear. The filter bowl is designed with a connection, threaded or flanged, for extending the return oil beneath the surface thus preventing the entrainment of air. A high efficiency of contaminant removal is assured by using STAUFF RE Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensures a long service life and as a result reduced maintenance costs.

Technical Data

Construction

Tank Top mounting or in-line mounting

Materials

Filter Housing: Carbon Steel
 Sealings: NBR (Buna-N®)
 FKM (Viton®)

EPDM (Ethylene Propylene Diene Monomer Rubber)

Other sealing materials on request

Port Connections

■ BSP

■ SAE flange 3000 PSI

Flow Rating

■ Up to 1135 I/min / 300 US GPM

Operating Pressure

■ Max. 25 bar / 365 PSI

Proof Pressure

Min. 37,5 bar / 545 PSI

Temperature Range

■ -10 °C ... +100 °C / +14 °F ... +212 °F

Filter Elements

Specifications see page 98

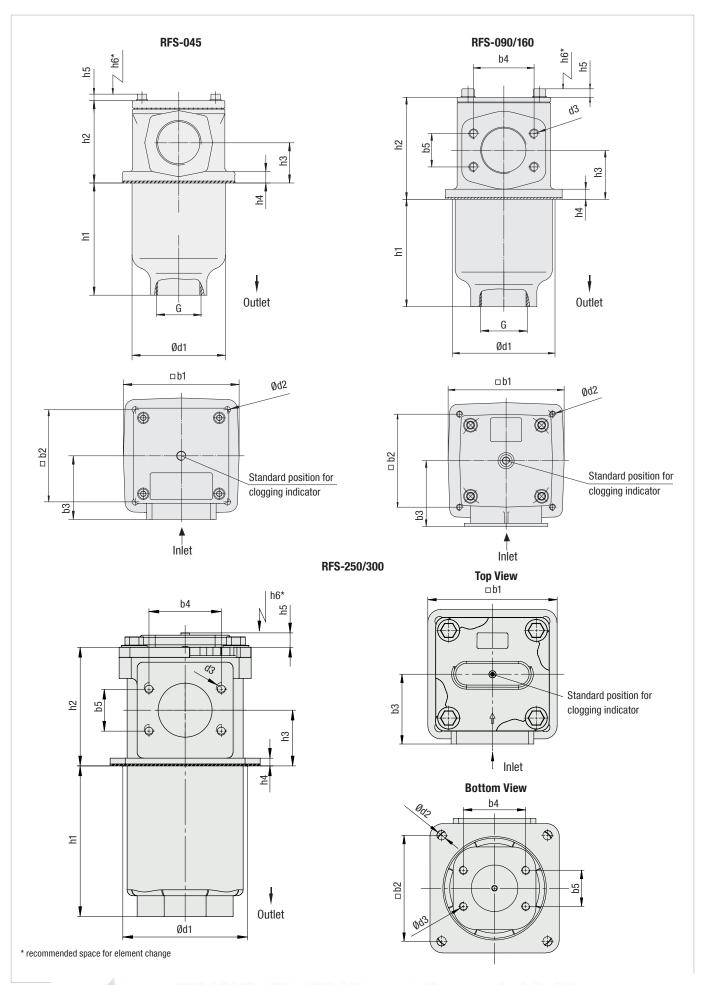
Media Compatibility

• Mineral oils, other fluids on request

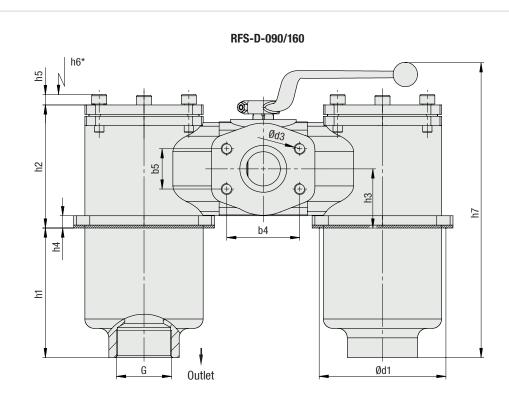
Options and Accessories

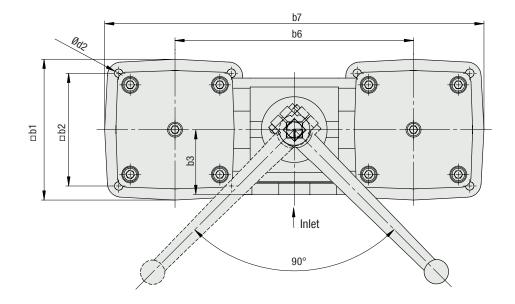
Valve

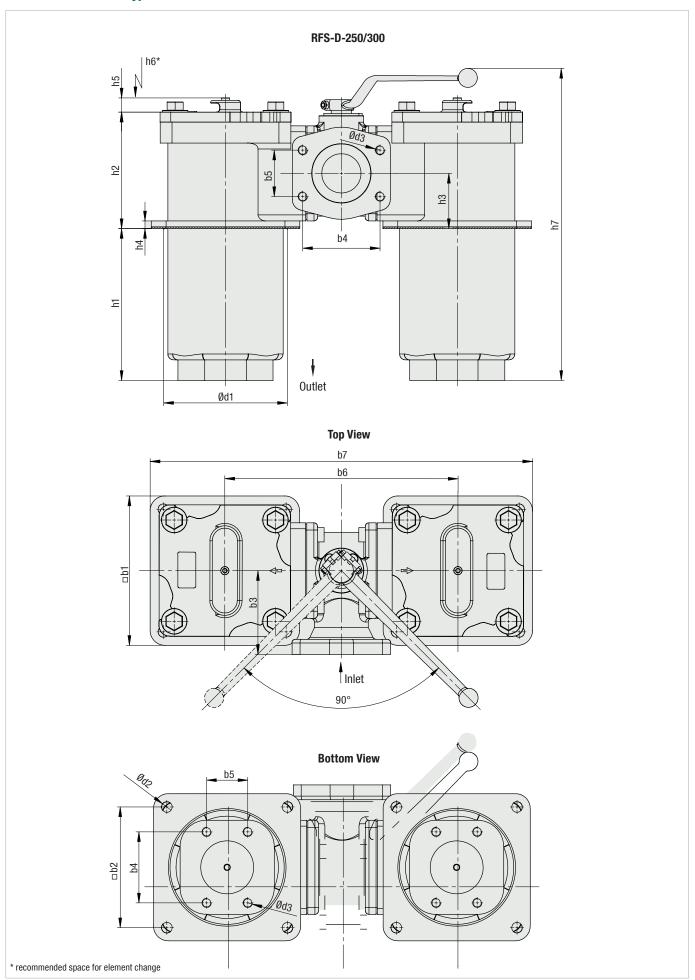
 Bypass valve (integrated in the filter element) Opening pressure 3 bar \pm 0,3 bar / 43.5 PSI \pm 4.35 PSI Other settings available on request


Clogging Indicators

• For clogging indicator types please see page 99




1800-OILSOL 1800-645765 https://oilsolutions.com.au/



 $\ensuremath{^{\star}}$ recommended space for element change

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Return-Line Filters • Type RFS / RFS-D

Thread Connection		Filter Size								
		RFS-045	RFS-090	RFS-D-090	RFS-160	RFS-D-160	RFS-250	RFS-D-250	RFS-300	RFS-D-300
Inlat	BSP	1-1/4	2	2	-	-	-	-	-	-
Inlet	SAE Flange	-	2	2	3	3	3-1/2	4	4	4
0	BSP	1-1/4	2	2	3	3	-	-	-	-
Outlet G	SAE Flange	-	-	-	-	-	3-1/2	3-1/2	4	4

Discounting (see Fig.)	Filter Size								
Dimensions (mm/in)	RFS-045	RFS-090	RFS-D-090	RFS-160	RFS-D-160	RFS-250	RFS-D-250	RFS-300	RFS-D-300
La .	120	150	150	196	196	255	255	255	255
b1	4.72	5.91	5.91	7.72	7.72	10.04	10.04	10.04	10.04
	95,5	120	120	155,5	155,5	205	205	205	205
b2	3.76	4.72	4.72	6.12	6.12	8.07	8.07	8.07	8.07
1.0	66	85	69	110	100	135	140	145	140
b3	2.60	3.35	2.72	4.33	3.94	5.32	5.51	5.71	5.51
b4		77,8	77,8	106,4	106,4	120,7	130,2	130,2	130,2
04	-	3.06	3.06	4.19	4.19	4.75	5.13	5.13	5.13
L.E.		42,9	42,9	61,9	61,9	69,5	77,8	77,8	77,8
b5	-	1.69	1.69	2.44	2.44	2.74	3.06	3.06	3.06
- 0			254		330		390		410
b6	-	-	10	-	12.99	7-	15.15		16.14
			404		525		640		660
b7	-	-	15.91	7	20.67	7	25.20		25.98
b8							120,7		130,2
	-	-	-	-	-	-	4.75		5.13
b9	_						69,5		77,8
09	-	-	-	-	-	-	2.74	T -	3.06
14	100	135	135	180	180	208	208	208	208
d1	3.94	5.32	5.32	7.09	7.09	8.19	8.19	8.19	8.19
10	6,5	9	9	13,5	13,5	17,5	17,5	17,5	17,5
d2	.26	.35	.35	.53	.53	.69	.69	.69	.69
JO.		M12	M12	M16	M16	M16	M16	M16	M16
d3	-	1/2-UNC	1/2-UNC	5/8-UNC	5/8-UNC	5/8 UNC	5/8 UNC	5/8 UNC	5/8 UNC
-4	120	138	138	243	243	251	251	332	332
h1	4.72	5.43	5.43	9.57	9.57	9.88	9.88	13.07	13.07
-0	88	131	131	167	167	198	198	241	241
12	3.47	5.16	5.16	6.57	6.57	7.80	7.80	9.49	9.49
-0	43	63	63	84	84	93	93	121	121
13	1.69	2.48	2.48	3.31	3.31	3.66	3.66	4.76	4.76
	13	13	13	13	13	13	13	13	13
14	.51	.51	.51	.51	.51	.51	.51	.51	.51
h5	7	12	12	12	12	24	24	24	24
	.28	.47	.47	.47	.47	.95	.95	.95	.95
-0	130	180	180	320	320	350	350	460	460
16	5.11	7.09	7.09	12.60	12.60	13.78	13.78	18.11	18.11
-3			314		450		525		630
h7	-	-	12.36	7-	17.72		20.67		24.80

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Return-Line Filter Housings / Complete Filters • Type RFS / RFS-D

① Type

Single Carbon Steel Return-Line Filter RFS
Double Carbon Steel Return-Line Filter RFS-D

② Group

Flow	Size
170 I/min / 45 US GPM (not for RFS-D)	045
340 I/min / 90 US GPM	090
600 I/min / 160 US GPM	160
945 I/min / 250 US GPM	250
1135 I/min / 300 US GPM	300
Note: Exact flow will depend on the selected filter ele For technical data please see pages 101 / 1	

③ Filter Material

Material	Max. Δp*collapse	Micron ratings available	Code
Without filter element	-	-	0
Inorg. glass fibre	25 bar / 363 PSI	3, 5, 10, 20	G
Stainless fibre	30 bar / 435 PSI	3, 3, 10, 20	Α
Filter paper	10 bar / 145 PSI	10, 20	N
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	S

Note: *Collapse/burst resistance as per ISO 2941. Other materials on request.

4 Micron Rating

03
05
10
20
25
50
100
200

5 Sealing Material

,	ocaling material	
	NBR (Buna®)	В
	FKM (Viton®)	٧
	EPDM	E
	Note: Other sealing materials on request.	

(6) Connection Style

Connection Style	Thread Style	Group 045	Code	Group 090	Code	Group 160	Code	Group 250	Code	Group 250*/ 300	Code
BSP	-	1-1/4	G20	2	G32	-	-	-	-	-	-
SAE Flange 3000 PSI	metric	-	-	2	C332M	3	C348M	3-1/2	C356M	4	C364M
SAE Flange 3000 PSI	UNC	-	-	2	C332U	3	C348U	3-1/2	C356U	4	C364U
* Note: Only for RFS-D	-250.										

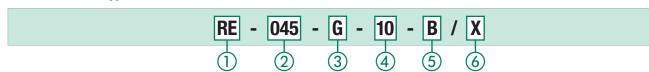
~ · · · · · ·

7 Clogging Indicator

0	Without Clogging Indicator	
V	Visual Clogging Indicator	
G42N0	Electrical Clogging Switch 42 V, NO	
G42NC	Electrical Clogging Switch 42 V, NC	
G230	Electrical Clogging Switch 110 V 230 V, two-way contact (only for Code W)	

® Option Clogging Indicator G42NO, G42NC and G230

10 Design Code


Only for information

Plug connector	0
M12 x 1,5	M12
AMP plug	Α
Deutsch plug	D
Rubber boot	S
90 degree Polyamide cap (only for Code G230)	W

Outlet Style

Connection Style	Thread Style	Group 045	Code	Group 090	Code	Group 160	Code	Group 250	Code	Group 300	Code
BSP	-	1-1/4	G20	2	G32	3	G48	-	-	-	-
SAE Flange 3000 PSI	metric	-	-	-	-	-	-	3-1/2	C356M	4	C364M
SAE Flange 3000 PSI	UNC	-	-	-	-	-	-	3-1/2	C356U	4	C364U

Filter Elements • Type RE

Filter Element Series

② Group

According to filter housing

3 Filter Material

y i neor matorial							
	Material	Max. Δp*collapse	Micron ratings available	Code			
	Inorg. glass fibre	25 bar / 363 PSI	3, 5, 10, 20	G			
	Stainless fibre	30 bar / 435 PSI	3, 3, 10, 20	Α			
	Filter paper	10 bar / 145 PSI	10, 20	N			
	Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	S			

Note: *Collapse/burst resistance as per ISO 2941. Other materials on request.

4 Micron Rating

ο μιιι	US
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200
Note: Other micron ratings on request.	

(5) Sealing Material

NBR (Buna®)	В
FKM (Viton®)	V
EPDM	Е
Note: Other sealing materials on request.	

6 Design Code

Only for information

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Return-Line Filters • Type RFS / RFS-D

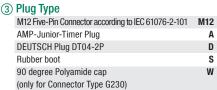
Electrical Clogging Switch

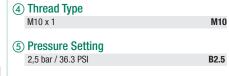
The switch is used where an electrical signal is needed to indicate when the element needs to be changed. The switch can turn on a light, or shut the machine down, or any further function controlled by an electric signal. The switching pressure is 2,5 bar / 36.25 PSI and this allows the element to be changed before the bypass setting of 3 bar / 43.5 PSI is reached.

Standard type with plug connector and rubber cap. Available with DEUTSCH DT04-2P plug (industrial standard), AMP Junior Timer plug (industrial standard) and five-pin circular connector M12, A-coded, according to IEC 61076-2-101.

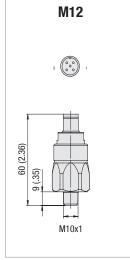
Technical Data

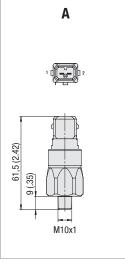
	Limit-Switch G42N0+NC	Limit-Switch G230				
Switching Capacity	100 VA	1000 VA				
Voltage	1042 VAC	10250 VAC				
Current	10mA4A					
Switching Accuracy	\pm 0,5 bar at room temp. and new state					
Switching Frequency	D/min					
max. Pressure Ramp Rate	≤1	bar/ms				
Degree of Protection	IP65 (plug type S and W), IP67 (plug type M12, A, D)					
Temperature Range	-30°C +100°C	-40°C +100°C				

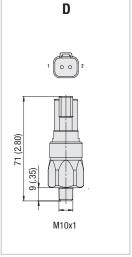

Order Code

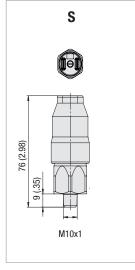


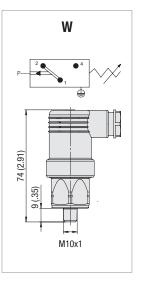
2


Limit-Switch


Connector Type	
Electrical Clogging Switch 42 V, NO	G42N0
Electrical Clogging Switch 42 V, NC	G42NC
Electrical Clogging Switch 110 V 230 V, two-way contact (only for Plug Type W)	G230






Dimensions Plug Type

Note: The customer / user carries the responsibility for the electrical connection.

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Return-Line Filters • Type RFS / RFS-D

Visual Clogging Indicator

The gauge visually displays the degree of contamination of the element. The colored segments allow quick visual checking.

 $0 \dots 2{,}5~bar\,/\,0 \dots\,36.25\,PSI$ green Flement has service life left

yellow 2,5 ... 3,0 bar / 36.25 ... 43.5 PSI Element is contaminated and should be changed >3,0 bar / >43.5 PSI Bypass valve open, unfiltered oil passing to tank

Order Codes

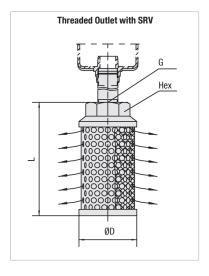
1) Type

Visual Clogging Indicator

SPG-C-040-00004-02-P-M10-402922

Visual Clogging Indicator Ø40 1.58 □14 □.51 M10x1

Leakage Oil Connection

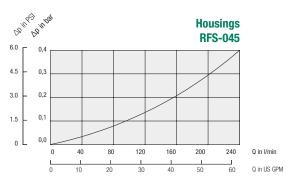

Seal or case drain lines can be connected to the filter through either of the clogging indicator ports providing that the leakage oil can accept a pressure of 3 bar / 43.5 PSI. It ensures that no unfiltered oil can return to the reservoir.

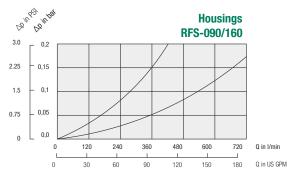
Filter Bowl with Threaded Connection and Diffuser

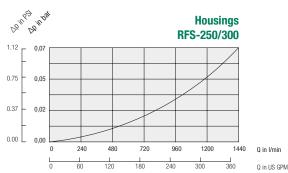
Diffusers mounted to the filter bowl minimise foaming and reduce noise of high Return-Line flows. For further details on STAUFF Diffusers please refer to the Catalogue No. 10 - Hydraulic Accessories. Attention: Connection pipe not included in scope of delivery!

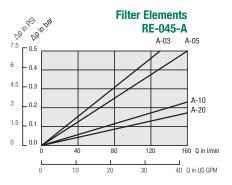
Size SRV	for Return-Line	Dimensions (mm/in)						
SIZE SNV	Filter Size	øD	L	Thread G	Hex			
SRV-227-G24	BES-250	84	200	G1-1/2	60			
SRV-227-N24	NF3-200	3.31	7.87	1-1/2 NPT	2.36			
SRV-454-G32	RES-250	84	260	G2	70			
SRV-454-N32	NF3-200	3.31	10.24	2 NPT	2.76			
SRV-950-G24	BES-250	148	272	G3	100			
SRV-950-N24		5.83	10.71	3 NPT	3.94			

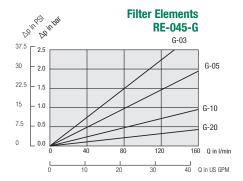
1800-OILSOL 1800-645765

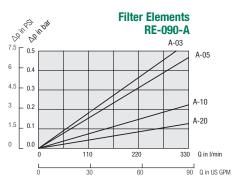

https://oilsolutions.com.au/

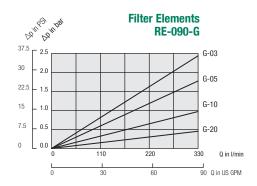


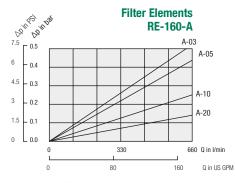



Return-Line Filters • Type RFS Flow Characteristics

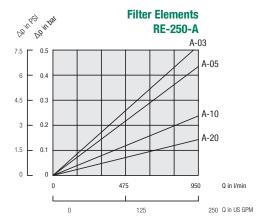

The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Contact STAUFF for details.

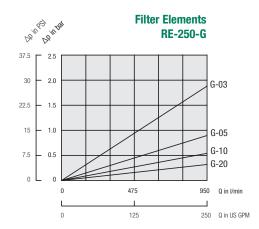


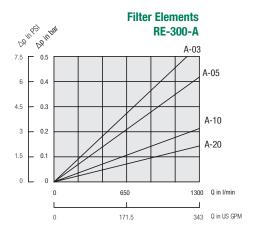


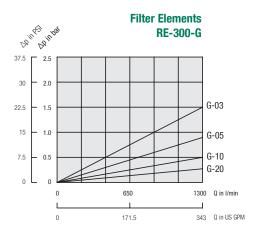


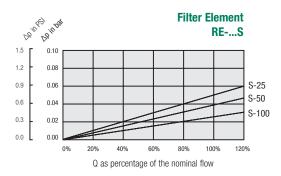


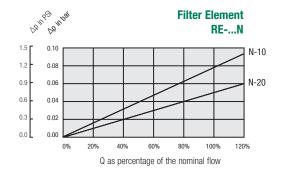

1800-OILSOL 1800-645765


https://oilsolutions.com.au/




Return-Line Filters • Type RFS Flow Characteristics


The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Contact STAUFF for details.



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Return-Line Filters • Type RTF-10/15/25

Product Description

STAUFF RTF-10/15/25 Return-Line Filters are designed as tank top filters with a maximum operating pressure of 3,4 bar / 49 PSI.

Technical Data

Construction

■ Tank Top flange mounting

Materials

- Filter head:Aluminium
- Filter bowl: Polyamide
- Sealings: NBR (Buna-N®) FKM (Viton®)

Other sealing materials on request

Port Connections

- BSP
- NPT
- SAE 0-ring thread

Flow Rating

■ Up to 95 I/min / 25 US GPM

Operating Pressure

Max. 3,4 bar / 49 PSI

Burst Pressure

■ Min. 10 bar / 145 PSI

Temperature Range

■ -25 °C ... +95 °C / -13 °F ... +203 °F

Filter Elements

■ Specifications see page 106

Media Compatibility

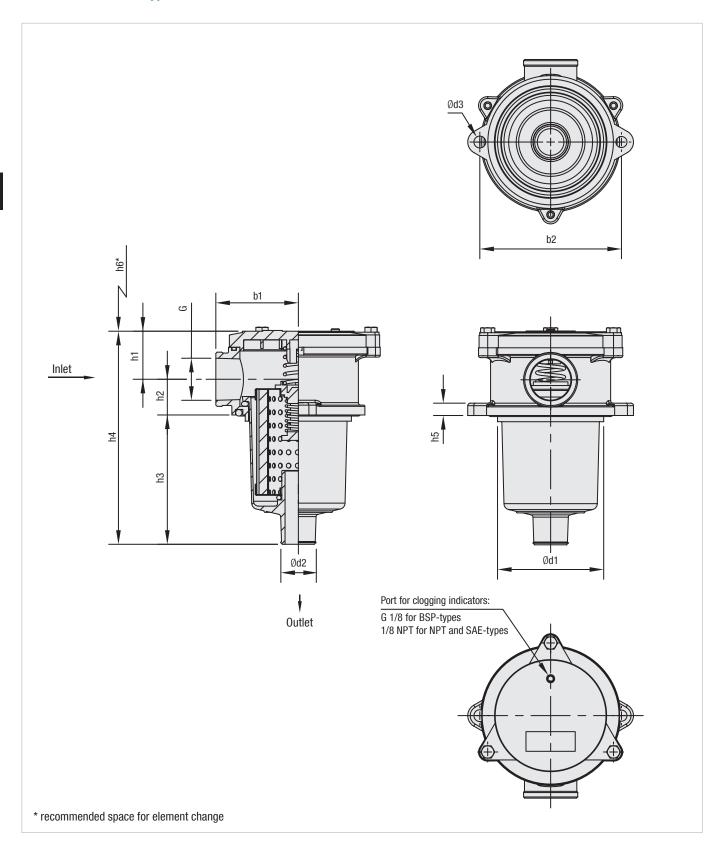
Mineral oils, other fluids on request

Options and Accessories

Valve

Bypass valve: Opening pressure 1,7 bar / 25 PSI (integrated in the filter element)
 Other settings available on request

Clogging Indicators


• For clogging indicator types please see page 125

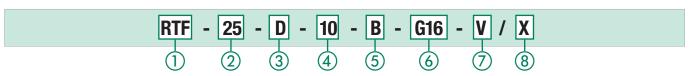
1800-OILSOL 1800-645765 https://oilsolutions.com.au/

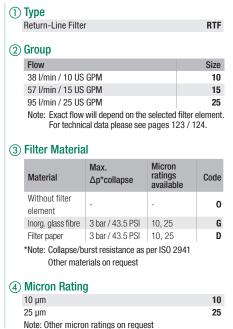
Return-Line Filters • Type RTF-10/15/25

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Return-Line Filters • Type RTF-10/15/25

Thread Connection G	Filter Size RTF			
	10	15	25	
BSP	1/2	1	1	
NPT	1/2	1	1	
SAE 0-ring	-	1-5/16–12	1-5/16–12	


Dimensions (mm/in)	Filter Size RTF	Filter Size RTF			
	10	15	25		
h1	26	34	34		
	1.02	1.34	1.34		
h2	21	29	29		
	.83	1.14	1.14		
h3	89	103	149		
	3.50	4.05	5.87		
h4	136	166	212		
	5.35	6.53	8.35		
h5	8	10	10		
	.32	.39	.39		
h6	110	130	175		
	4.33	5.12	6.89		
b1	50	67	67		
	1.97	2.64	2.64		
b2	90	115	115		
	3.54	4.52	4.52		
d1	66	86	86		
	2.60	3.39	3.39		
d2	24	28	28		
	.94	1.10	1.10		
d3	7	9	9		
	.28	.35	.35		
Weight (kg/lbs)	0,45	0,9	1		
	1	2	2.2		



1800-OILSOL 1800-645765 https://oilsolutions.com.au/

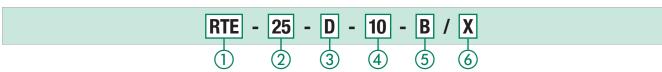
Return-Line Filter Housings / Complete Filters • Type RTF-10/15/25

(5) Sealing Material

NBR (Buna®)

FKM (Viton®)

Note: Other sealing materials on request


(6) Connection Style

Clogging Indicator
 Without clogging indicator
 Visual clogging indicator
 Electrical clogging indicator
 Note: See page 125 for more details on indicator ports and types.

8 Design Code
Only for information
X

Filter Elements • Type RTE

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Product Description

STAUFF RTF-20 Return-Line Filters are designed as tank top filters with a maximum operating pressure of 10 bar / 145 PSI and flow rates up to 115 I/min / 30 US GPM. The filter bowl is designed to return the oil beneath the surface thus preventing entrainment of air. RTF-20 series compact design and integral breather make them ideal for mobile hydraulic applications.

Technical Data

Construction

Tank Top flange mounting

Materials

Filter head: Aluminium
 Filter bowl & cap: Polyamide
 Sealings: NBR (Buna-N®)
 FKM (Viton®)

Other sealing materials on request

Port Connections

BSP

NPT

SAE 0-ring thread

Flow Rating

■ Up to 115 I/min / 30 US GPM

Operating Pressure

Max. 10 bar / 145 PSI

Burst Pressure

■ Min. 30 bar / 435 PSI

Temperature Range

■ -25 °C ...+95 °C / -13 °F ... +203 °F

Integrated Breather

- Filter paper 10 µm
- Filter paper 40 µm

Filter Elements

Specifications see page 110

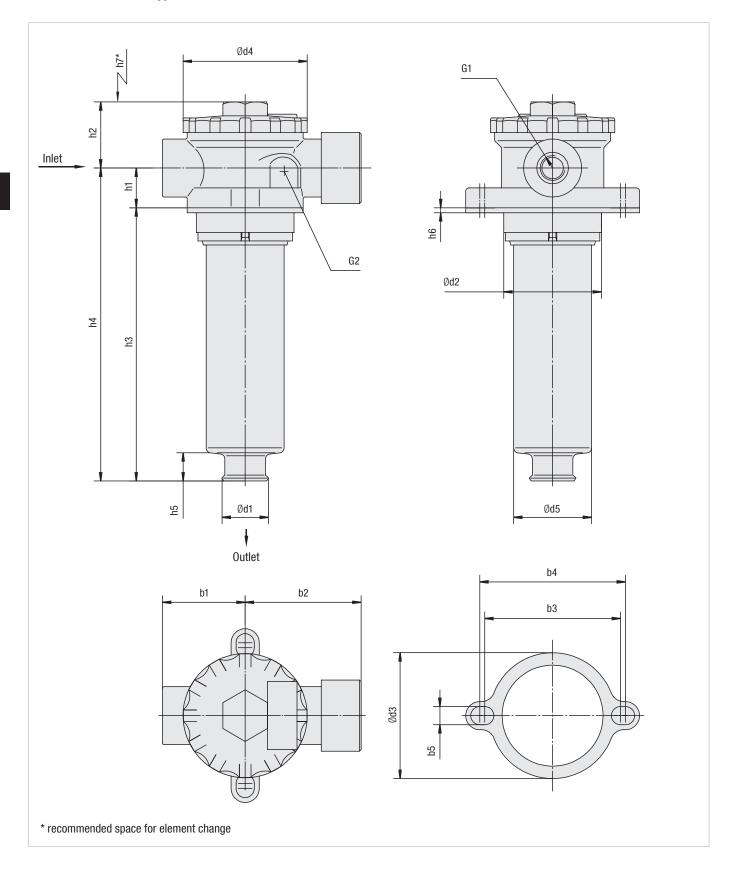
Media Compatibility

Mineral oils, other fluids on request

Options and Accessories

Valve

Bypass valve: Opening pressure 1,7 bar / 25 PSI (integrated in the filter element)
 Other settings available on request


Clogging Indicators

• For clogging indicator types please see page 125

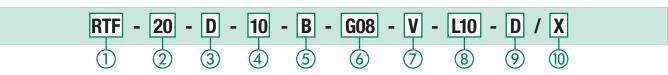
1800-OILSOL 1800-645765 https://oilsolutions.com.au/

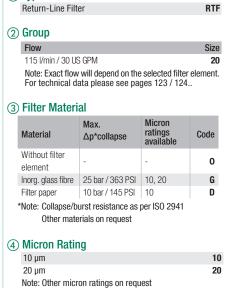
1800-OILSOL 1800-645765

https://oilsolutions.com.au/

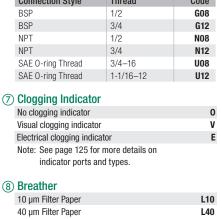
Thread Connection G1	Filter Size RTF	
Inread Connection G1	020	
BSP	1/2	3/4
NPT	1/2	3/4
SAE Thread	3/4–16	1–1/16

D'	Filter Size RTF
Dimensions (mm/in)	020
hd	50
b1	1.97
1.0	70
b2	2.76
LO	82
b3	3.23
h.4	88
b4	3.46
L.C.	11
b5	.43
d1	28
uı	1.10
d2*	Min. 60 / Max. 63
uz	Min. 2.36 / Max. 2.48
d3	77
uo	3.03
d4	75
u4	2.95
d5	48
uJ	1.89
h1	24
	.94
h2	37,5
112	1.48
h3	178
113	7.01
h4	202
117	7.95
h5	16
110	.63
h6	2
	.07
h7	210
	8.27
G2	G1/8 or 1/8 NPT

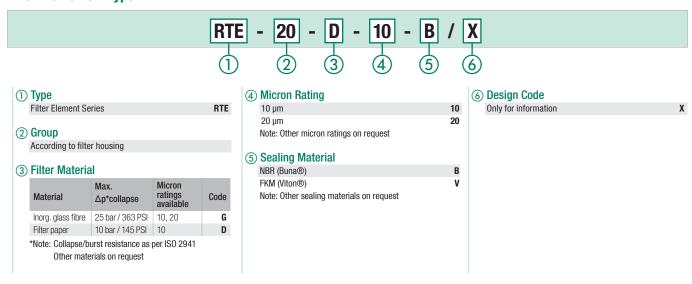

^{*} recommended diameter for mounting hole

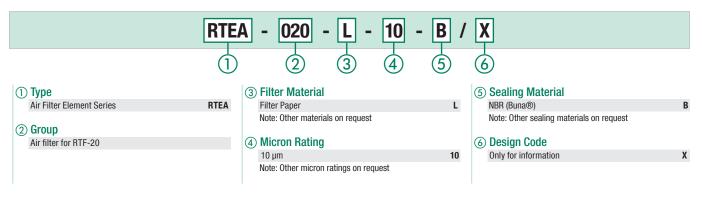


1) Type



Return-Line Filter Housings / Complete Filters - Type RTF-20





Filter Elements • Type RTE

Air Filter Elements • Type RTEA

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Product Description

STAUFF RTF-40 Return-Line Filters are designed as tank top filters with a maximum operating pressure of 6,9 bar / 100 PSI. The filter bowl is designed to return the oil beneath the surface thus preventing entrainment of air.

Technical Data

Construction

■ Tank Top flange mounting

Materials

- Filter head:Aluminium
- Filter bowl: Bowl length 1: Polyamide

Bowl length 2: Steel

■ Sealings: NBR (Buna-N®)

Other sealing materials on request

Port Connections

- BSP
- NPT
- SAE 0-ring thread
- SAE flange Flow Rating

■ Up to 378 I/min / 100 US GPM

Operating Pressure

Max. 6,9 bar / 100 PSI

Temperature Range

■ -25 °C ...+95 °C / -13 °F ... +203 °F

Filter Elements

- RTE-47 with integrated bypass valve, single stack length
- bypass valve integrated in the filter head, ■ RTE-48
 - equivalent to the HF-4 elements, single and double stack lengths
- RTE-49 bypass valve integrated in the filter head, single and double stack lengths
- Specifications see page 114

Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

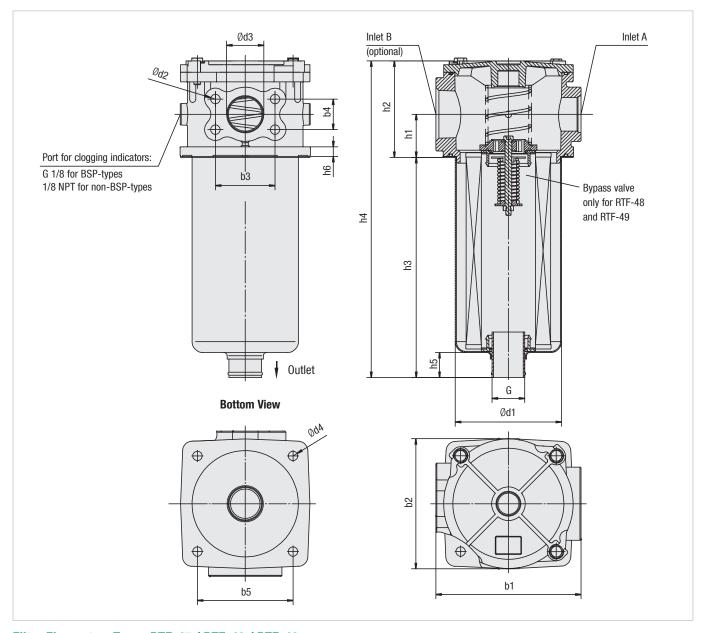
Valve

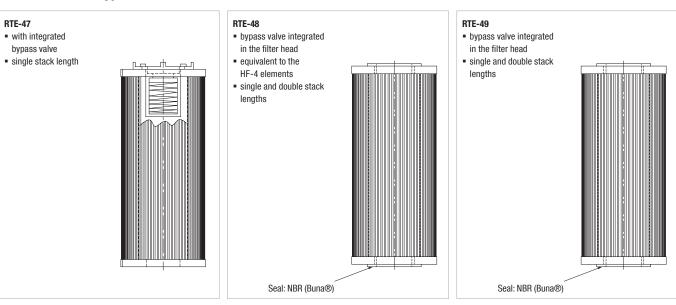
Opening pressures 1 bar / 14.5 PSI ± 10 % or Bypass valve:

1,7 bar / 25 PSI ± 10 %

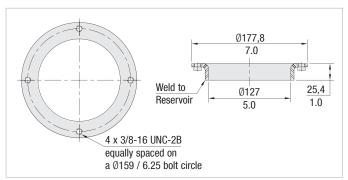
Bypass intergrated in the filter element RTF-48/49: Bypass integrated in the filter head

Clogging Indicators


• For clogging indicator types please see page 125


1800-OILSOL 1800-645765

https://oilsolutions.com.au/



Filter Elements • Types RTE-47 / RTE-48 / RTE-49

RTF-40 Series Weld Ring WR-40

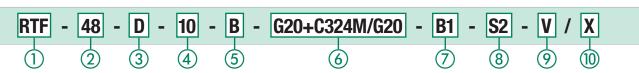
The WR-40 weld ring is welded directly to the hydraulic reservoir, eliminating the need for drilling and tapping mounting holes in the reservoir.

Material: Carbon Steel

Thread Connection	Filter Size RTF			
Combinations	4S1	4\$1		
	Inlet A	Inlet B	Inlet A	Inlet B
BSP	1-1/4 and 1-1/2 SAE Flange	None	1-1/4 and 1-1/2 SAE Flange	None
BSP	1-1/4 and 1-1/2 SAE Flange	1-1/4	1-1/4 and 1-1/2 SAE Flange	1-1/4
NPT	1-1/4 and 1-1/2 SAE Flange	None	1-1/4 and 1-1/2 SAE Flange	None
NPT	1-1/4 and 1-1/2 SAE Flange	1-1/4	1-1/4 and 1-1/2 SAE Flange	1-1/4
NPT	1-1/2	None	1-1/2	None
NPT	1-1/2	1-1/4	1-1/2	1-1/4
NPT	1-1/2	1-1/2	1-1/2	1-1/2
SAE	1-5/8-12	None	1-5/8-12	None
SAE	1-5/8-12	1-5/8-12	1-5/8-12	1-5/8-12
SAE	1-5/8-12	1-7/8-12	1-5/8-12	1-7/8-12
SAE	1-5/8-12	2-1/2-12	1-5/8-12	2-1/2-12
SAE	1-7/8-12	1-7/8-12	1-7/8-12	1-7/8-12
Combination SAE & NPT	1-5/8-12	2	1-5/8-12	2

Filter Size RTF		
4S1	4S2	
50	50	
1.97	1.97	
112	112	
4.41	4.41	
263	475	
10.35	18.70	
385	587	
15.16	23.11	
21	38	
.83	1.50	
11	11	
.43	.43	
170	170	
6.70	6.70	
152	152	
5.98	5.98	
69.9	69.9	
2.75	2.75	
35,6	35,6	
1.40	1.40	
112	112	
4.41	4.41	
122	126	
4.80	4.96	
M12 or	M12 or	
1/2–13 UN	1/2–13 UN	
38,1	38,1	
1.50	1.50	
11	11	
.43	.43	
G1-1/2 or	G1-1/2 or	
1-1/2 NPT	1-1/2 NPT	
	4\$1 50 1.97 112 4.41 263 10.35 385 15.16 21 .83 11 .43 170 6.70 152 5.98 69.9 2.75 35.6 1.40 112 4.41 122 4.80 M12 or 1/2-13 UN 38,1 1.50 11 .43 G1-1/2 or	

1800-OILSOL 1800-645765 https://oilsolutions.com.au/


sales@oilsolutions.com.au

Dimensions in mm / in

Return-Line Filter Housings / Complete Filters • Type RTF-40

1) Type Return-Line Filter RTF

② Group

Size 190 I/min / 50 US GPM 47 190 I/min / 50 US GPM 48 190 I/min / 50 US GPM

Note: Exact flow will depend on the selected filter element. For technical data please see pages 123 / 124. For element length 2 (only RTF-48 / RTF-49) please double relating flow values.

(3) Filter Material

Material	Max. Δp*collapse	Micron ratings available	Code
Without filter element	-	-	0
Inorg. glass fibre	10 bar / 145 PSI	3, 5, 10, 25	G
Filter paper	10 bar / 145 PSI	10, 25	D
*Note: Collanse/h	nuret registance as	ner ISO 2041	

Other materials on request

(4) Micron Rating

ソ	Micron naung	
	3 μm	03
	5 μm	05
	10 μm	10
	25 μm	25
	Note: Other micron ratings on request	

5 Sealing Material

NBR (Buna®) Note: Other sealing materials on request

6 Connection Style

Code	Group		Connection
Code	Port B	Port A	Style
G20+C324M/0	None	1-1/4 and	BSP
ULU 1 00L4III/ 0	INOTIC	1-1/2 SAE Flange	101
G20+C324M/G20	1-1/4	1-1/4 and	3SP
020+0324W/020	1-1/4	1-1/2 SAE Flange)
N20+C324M/0	None	1-1/4 and	IPT
N2U+G324WI/U	None	1-1/2 SAE Flange	гі
N20+C324M/N20	1-1/4	1-1/4 and	IPT
N2U+G324W/N2U	1-1/4	1-1/2 SAE Flange	IFI
N24/0	None	1-1/2	IPT
N24/N20	1-1/4	1-1/2	IPT
N24/N24	1-1/2	1-1/2	IPT
U20/0	None	1-5/8-12	SAE
U20/U20	1-5/8-12	1-5/8-12	AE
U20/U24	1-7/8-12	1-5/8-12	SAE
U20/U40	2-1/2-12	1-5/8-12	SAE
U24/U24	1-7/8-12	1-7/8-12	SAE
U20/N32	2	1-5/8-12	Combination NPT & SAE

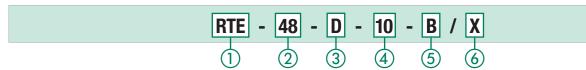
7 Valve

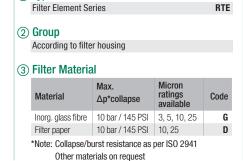
В

No bypass	C
1 bar / 15 PSI	B1.0
1,7 bar / 24.6 PSI	B1.7

8 Length

Bowl Length 1 (1 element)	S1
Bowl Length 2 (2 elements)	S2
Note: RTF-47 size available in S1 bowl length only.	


Clogging Indicator


No clogging indicator	0
Visual clogging indicator	V
Electrical clogging indicator	Е
Note: See page 125 for more details on	
indicator ports and options	

10 Design Code

Only for information

Filter Elements • Type RTE

(4) Micron Rating

3 μm	03
5 μm	05
10 μm	10
25 μm	25
Note: Other micron ratings on request	

(5) Sealing Material

5)	Seaning Material	
	NBR (Buna®)	В
	Note: Other sealing materials on request	

6 Design Code

Only for information

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Product Description

STAUFF RTF-50 Return-Line Filters are designed for tank top applications with a maximum pressure of 6,9 bar / 100 PSI. The filter bowl is designed to return the oil beneath the surface thus preventing entrainment of air. The RTF-58 elements interchange with the popular "K" series and RTF-59 elements interchange with the "RE-409" series elements.

Technical Data

Construction

■ Tank Top flange mounting

Materials

- Filter head:Aluminium
- Filter bowl: Bowl length 1: Polyamide

Bowl length 2: Steel

■ Sealings: NBR (Buna-N®)

Other sealing materials on request

Port Connections

- BSP
- NPT
- SAE 0-ring thread

Flow Rating

■ Up to 379 I/min / 100 US GPM

Operating Pressure

■ Max. 6,9 bar / 100 PSI

Temperature Range

■ -25 °C ...+95 °C / -13 °F ... +203 °F

Filter Elements

Specifications see page 118

Media Compatibility

Mineral oils, other fluids on request

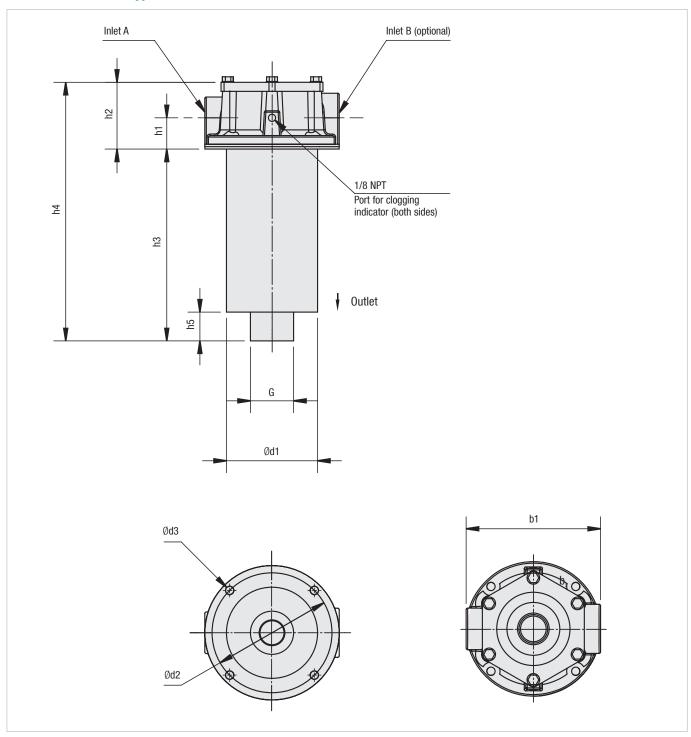
Options and Accessories

Valve

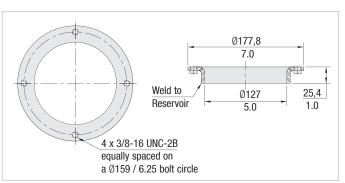
ullet Bypass valve: Opening pressures 1 bar / 14.5 PSI ±10 % or 1,7 bar /

25 PSI ±10 %

Other settings available on request


Clogging Indicators

■ For clogging indicator types please see page 125



1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Return-Line Filters • Type RTF Accessories

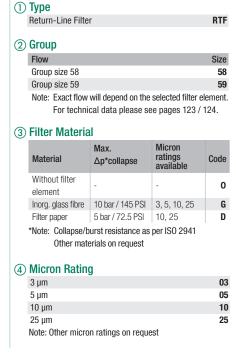
RTF-50 Series Weld Ring WR-40

The WR-40 weld ring is welded directly to the hydraulic reservoir, eliminating the need for drilling and tapping mounting holes in the reservoir.

Material: Carbon Steel

Dimensions in mm / in


Thread Connection	Filter Size RTF					
Combinations	5S1		5S2			
	Inlet A	Inlet B	Inlet A	Inlet B		
NPT (N)	1-1/4	None	1-1/4	None		
NPT (NM)	1-1/4	1-1/2	1-1/4	1-1/2		
NPT (M)	None	1-1/2	None	1-1/2		
Combination SAE & NPT (SM)	1-5/8-12	1-1/2	1-5/8-12	1-1/2		
SAE (S)	1-5/8-12	None	1-5/8-12	None		
SAE (T)	None	1-7/8-12	None	1-7/8-12		
SAE (ST)	1-5/8-12	1-7/8-12	1-5/8-12	1-7/8-12		
Combination NPT & SAE (NT)	1-1/4	1-7/8-12	1-1/4	1-7/8-12		


Dimensions (mm/in)	Filter Size RTF					
Dimensions (mm/in)	5S1	5S2				
h1	49,3	42,3				
	1.94	1.67				
h2	95,5	88,5				
IIZ	3.78	3.48				
h3	241,3	485,9				
IIO	9.50	19.13				
h4	336,8	574,9				
114	13.26	22.61				
h5	29,5	38,1				
III	1.16	1.50				
b1	177,8	177,8				
N I	7.00	7.00				
d1	124,8	126				
uı	4.91	4.96				
d2	158,7	158,7				
uz	6.25	6.25				
d3	11,2	11,2				
uo	.44	.44				
G	1-1/2 NPT	1-1/2 NPT				

Return-Line Filter Housings / Complete Filters - Type RTF-50

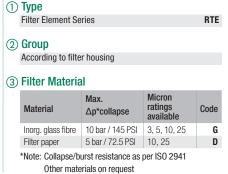
Connection	Group		Code
Style	Port A	Port B	Code
NPT	1-1/4	None	N20/0
NPT	1-1/4	1-1/2	N20/N24
NPT	None	1-1/2	0/N24
Combination SAE & NPT	1-5/8-12	1-1/2	U20/N24
SAE	1-5/8-12	None	U20/0
SAE	None	1-7/8-12	0/U24
SAE	1-5/8-12	1-7/8-12	U20/U24
Combination NPT & SAE	1-1/4	1-7/8-12	N20/U24

7 Valve	
No bypass	0
1 bar / 15 PSI	B1.0
1,7 bar / 24.6 PSI	B1.7

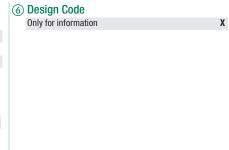
8 Length

Bowl Length 1 (1 element) \$1
Bowl Length 2 (2 elements) \$2

Clogging Indicator


0
V
E

10 Design Code


Only for information

Filter Elements • Type RTE

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Product Description

STAUFF RTF-N Return-Line Insert Filters allow for a choice of installation configurations which permits custom reservoir design with an in tank filtering system. The filters are installed semi-immersed or totally immersed into a reservoir. The filtration flow is from inside to the outside of the element which ensures that all the contaminant is collected inside the element itself avoiding contact with the reservoir fluid during element change. The combination of magnetic pre-filtration and high filtration efficiency results in a cost effective and versatile filtration system.

Technical Data

Construction

Insert filter

Materials

Flange plate: Aluminium
Magnet rod: Steel
Bypass: Steel
Diffuser: Steel

■ Sealings: NBR (Buna-N®)

FKM (Viton®)

Other sealing materials on request

Flow Rating

■ Up to 500 I/min / 132 US GPM

Operating Pressure

Max. 10 bar / 145 PSI

Temperature Range

■ -29 °C ...+107 °C / -20 °F ... +225 °F

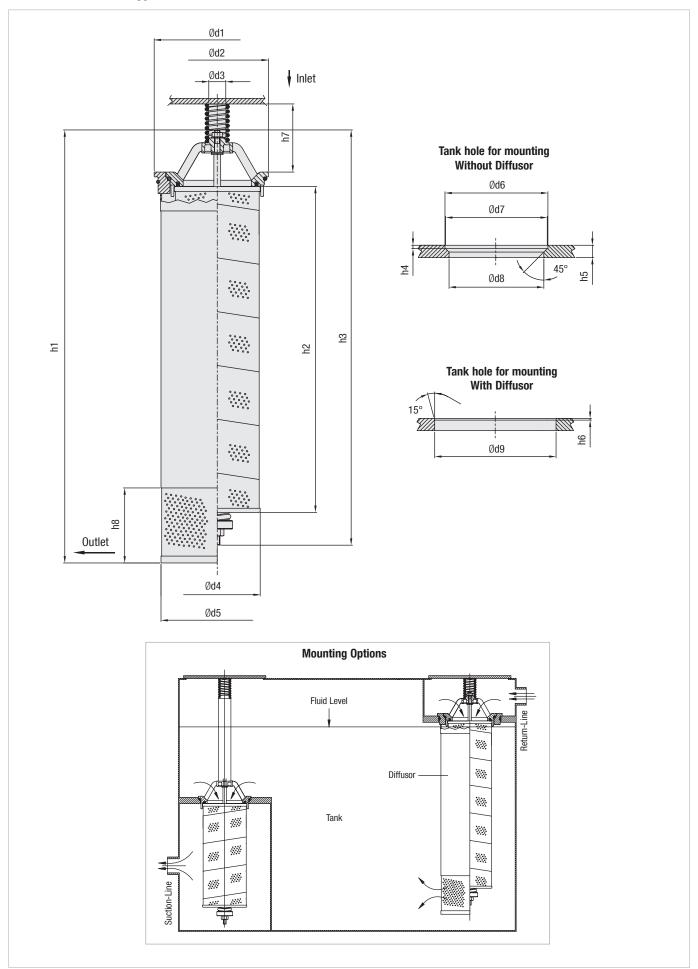
Filter Elements

Specifications see page 122

Media Compatibility

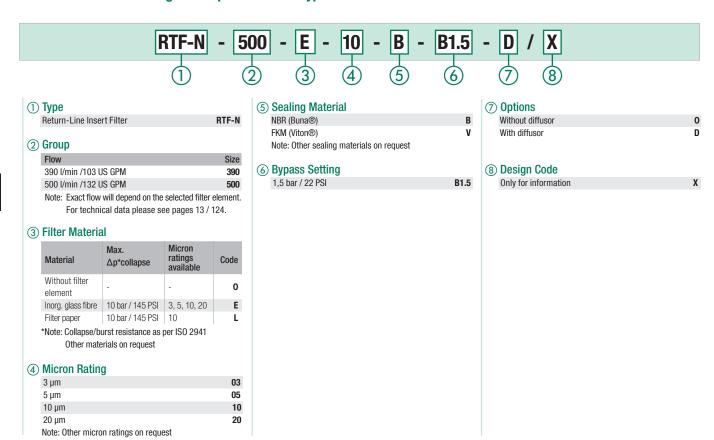
• Mineral oils, other fluids on request

Options and Accessories

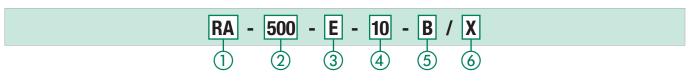

Valve

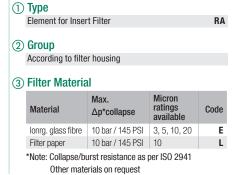
 Bypass valve: (integrated in the filter element) Opening pressure 1,5 bar / 22 PSI Other settings available on request

1800-OILSOL 1800-645765 https://oilsolutions.com.au/



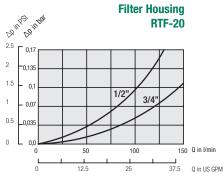
Dimensions (mm/in) 390 500 h1 445 635 17.52 25.00 h2 290 478 11.42 18.82 h3 421 609 16.57 23.98 h4 5 5 .20 .20 h5 18 18 .71 .71 .71 h6 2,5 2,5 .10 .10 .10 h7 100 100 3.94 3.94 h8 110 110 h8 110 110	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} & 17.52 & 25.00 \\ & 12.00 & 478 \\ \hline & 11.42 & 18.82 \\ \hline & 18.82 \\ \hline & 16.57 & 23.98 \\ \hline & 5 & 5 \\ \hline & 20 & .20 \\ \hline & 18 & 18 \\ \hline & .71 & .71 \\ \hline & .71 & .71 \\ \hline & .71 & .71 \\ \hline & .10 & .10 \\ \hline & .10 & .10 \\ \hline & .10 & .3.94 \\ \hline & .10 & .3.94 \\ \hline & .11 & .11 \\ \hline & .10 & .3.94 \\ \hline & .11 & .3.94 \\ \hline & .11 & .3.94 \\ \hline & .11 & .3.94 \\ \hline & .12 & .3.94 \\ \hline & .13 & .3.94 \\ \hline & .14 & .3.94 \\ \hline & .15 & .3.94 $	
$\begin{array}{c} \text{h2} \\ \text{h3} \\ & \begin{array}{c} 421 \\ 16.57 \\ \hline \\ 16.57 \\ \end{array} \\ \begin{array}{c} 23.98 \\ \hline \\ 20 \\ \hline \\ .20 \\ \hline \\ .25 \\ \hline \\ .71 \\ \hline \\ $	
h3	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} 10.57 & 2.596 \\ \hline h4 & 5 & 5 \\ \hline 20 & .20 \\ h5 & 18 & 18 \\ \hline .71 & .71 \\ \hline h6 & 2.5 & 2.5 \\ \hline .10 & .10 \\ \hline h7 & 100 \\ \hline 3.94 & 3.94 \\ \hline \end{tabular}$	
$\begin{array}{c} 120 \\ 18 \\ \hline 18 \\ \hline 171 \\ \hline 18 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 181 \\ \hline 171 \\ \hline 181 \\ \hline 191 $	
h6 71 .71 h6 2,5 2,5 .10 .10 h7 100 100 3.94 3.94 h0 110 110	
h6 2,5 2,5 2,5 10 110 110 110 110 110 110 110 110 110	
h7	
h7	
3.94 3.94 b0 110 110	
3.94 3.94 bo 110 110	
110	
4.33 4.33	
d1 185 185	
7.28	
d2 150 150	
5.91	
d3 25 25	
86.	
d4 126 126 126	
4.95	
d5 165 165	
6.30	
ac 151 151	
d6 5.94 5.94	
d7 149 149 507	
5.87	
d8 139 139	
5.47	
d9 178 178	
7.01	

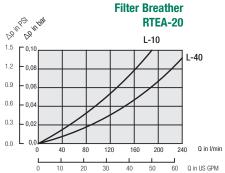


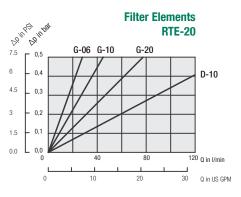


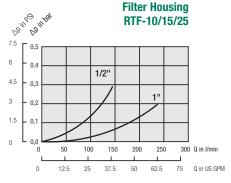
Return-Line Filter Housings / Complete Filters • Type RTF-N

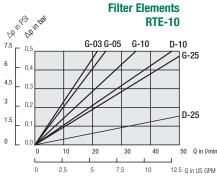
Filter Elements • Type RA

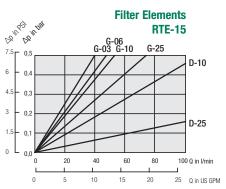


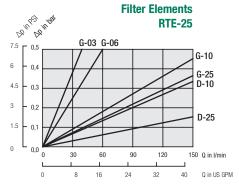

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

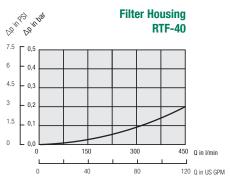


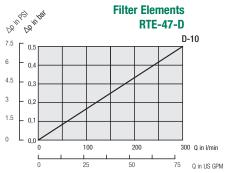

Return-Line Filters • Type RTF Flow Characteristics

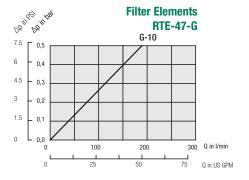

The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Contact STAUFF for details.

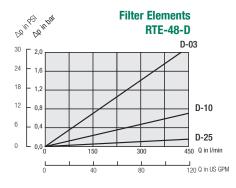


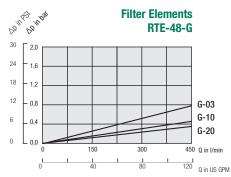


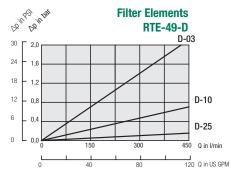


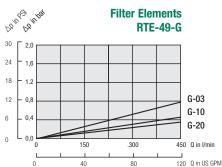


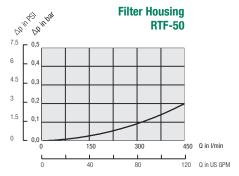


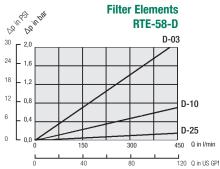


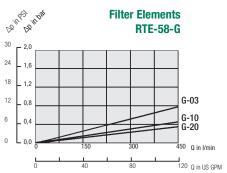


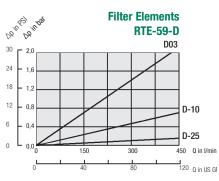


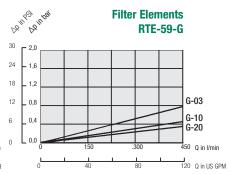


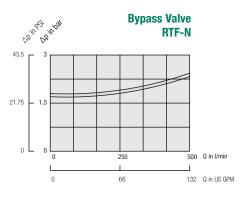


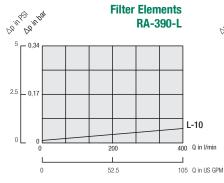

Return-Line Filters • Type RTF Flow Characteristics

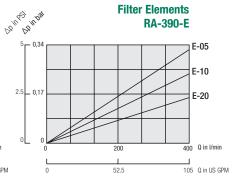

The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Contact STAUFF for details.

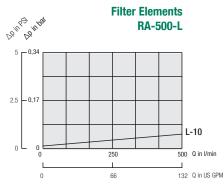


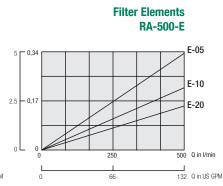




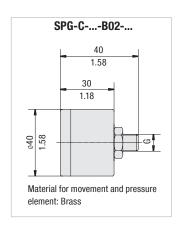


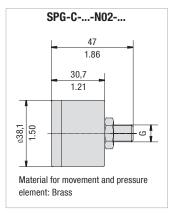





Note: Element pressure drop curves are for "S1" single elements. For "S2" double elements use 50% of the "S1" Value.

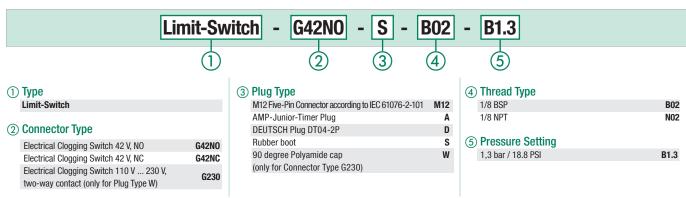
1800-OILSOL 1800-645765


https://oilsolutions.com.au/

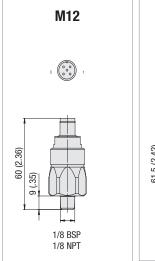

sales@oilsolutions.com.au

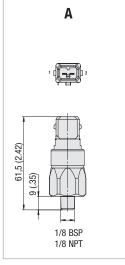
RTF Filter Indicators

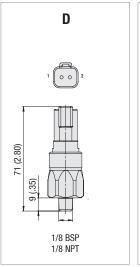
Visual Indicators

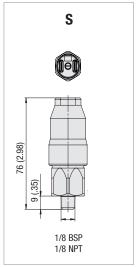

SPG-C-...-B02-..

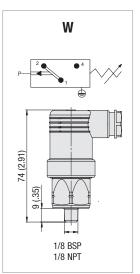
SPG-C-...-N02-...


Visual Pressure Clogging Indicators							Order Code	
Thread Unit of cools Penns of cools Coloured Segments						order code		
Connection	G	Unit of scale	Range of scale	Green	Yellow	Red		
	1/8	bar	0 2,5	0 1,2	1,2 1,5	1,5 2,5	SPG-C-040-00002.5-02-P-B02-402923	
BSP	1/8	bar	0 4	0 2,5	2,5 3	3 4	SPG-C-040-00004-02-P-B02-402922	
	1/8	bar	0 12	without coloure	without coloured segments		SPG-C-040-00012-02-P-B02	
NPT	1/8	PSI	0 100	0 13	13 15	15 100	SPG-C-040-00100-03-P-N02-402927	
INFI	1/8	PSI	0 100	0 21	21 25	25 100	SPG-C-040-00100-03-P-N02-402928	


Electrical Clogging Switch


Order Code




Note: Technical Data for Limit-Switch types please see Page 73.

Note: The customer / user carries the responsibility for the electrical connection.

Dimensional drawings: All dimensions in mm/in.

	Overview In-Line Filters		128
	SRFL-S / SRFL-D / SRFL-SW		
	In-Line Filters Max. 14 bar / 200 PSI Max. 7000 I/min / 1850 US GPM	SRFL-S / SRFL-D	129 - 142
Lien	Technical Data / Dimensions		130 - 139
	Order Code - In-Line Filter		140
	Order Code - Filter Elements		140
	Differential Pressure Switch with Visual Gauge Indicator		141
	Flow Characteristics		142
	In-Line Filters Max. 16 bar / 232 PSI Max. 13330 I/min / 3521 US GPM	SRFL-SW	143 - 147
	Technical Data / Dimensions		144 - 145
	Order Code - In-Line Filter		146
	Order Code - Filter Elements		146
	Differential Pressure Switch with Visual Gauge Indicator		147

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Description

STAUFF In-Line Simplex Filters SRFL-S and Duplex Filters SRFL-D are designed for in-line hydraulic applications. With its compact construction and the easy maintain assembly the SRFL-S and SRFL-D Filters are suitable for flow rates up to 7000 l/min / 1850 US GPM.

The two housings of the Duplex Filter SRFL-D are connected with a special gate valve that is operated with a level or hand wheel. Therefore the filter may be serviced without shutting down the hydraulic system.

The STAUFF In-Line Filter SRFL-SW is designed for installation in water circulations. This filter can be used for cleaning of e.g. industrial water of descaling systems. The filter elements are designed as basket strainers, which keep the dirt during the element change.

Media Compatibility

. Mineral oils, lubrication oils and water, others on request

Options and Accessories

Valves (except REL Filter Elements)

Bypass valve (integrated in the filter element)

Clogging Indicators

- On request with visual and electrical differential pressure indicator
- The SRFL-SW is also available with an visual-electrical differntial pressure indicator

Type SRFL-S

Version: Simplex

• Operating pressure: max. 14 bar / 200 PSI

Nominal flow rate: max. 7000 I/min / 1850 US GPM

 Materials: Filter housing: Carbon Steel, Stainless Steel (on request)
 Connections: ANSI, DIN or SAE flange

(ISO 6162-1/2)

Type SRFL-SW

• Version: Simplex, suitable for water

Duplex on request

• Operating pressure: max. 16 bar / 232 PSI

Nominal flow rate: max. 13330 l/min / 3521 US GPM
 Materials: Filter housing: Carbon Steel,
 Stainless Steel (on request)

• Connections: ANSI or DIN flange

Type SRFL-D

Version: Duplex

 With switch control for maintenance of the system without stoppage

Operating pressure: max. 14 bar / 200 PSI

Nominal flow rate: max. 7000 l/min / 1850 US GPM
 Materials: Filter housing: Carbon Steel,

Stainless Steel (on request)

Connections:

ANSI, DIN or SAE flange

(ISO 6162-1/2)

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

In-Line Filters • Type SRFL-S / D

Product Description

STAUFF In-Line Simplex Filters SRFL-S and Duplex Filters SRFL-D are designed for in-line hydraulic applications. With its compact construction and the easy maintain assembly the SRFL-S and SRFL-D Filters are suitable for flow rates up to 7000 l/min / 1850 US GPM. The two housings of the Duplex Filter SRFL-D are connected with a special gate valve that is operated with a level or hand wheel. Therefore the filter may be serviced without shutting down the hydraulic system. A high efficiency of contaminant removal is assured by using STAUFF RE series Replacement Filter Elements. The high dirt-hold capacity of STAUFF Elements ensure a long service life and, as a result, reduced maintenance costs.

Technical Data

Construction

• In-line assembly, base mounted

Materials

Carbon Steel · Filter housing:

Stainless Steel (on request)

Sealings: NBR (Buna-N®)

FKM (Viton®)

Other sealing materials on request

Port Connections

- DIN flange
- ANSI flange
- SAE flange

Operating Pressure

Max. 14 bar / 200 PSI

Flow Rating

■ Up to 7000 I/min / 1850 US GPM

Temperature Range

- -10 °C ... +100 °C / +14 °F ... +212 °F

Filter Elements

• Specifications see page 140

Media Compatibility

• Mineral oils, lubrication oils, other fluids on request

Options and Accessories

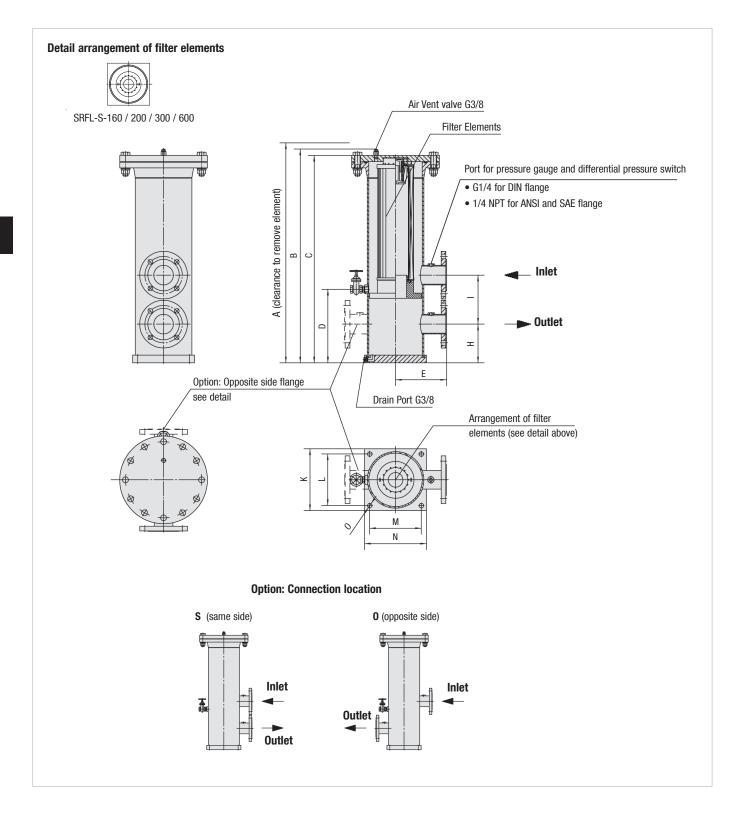
Valve

Bypass valve: Opening pressure 3 bar \pm 0,3 bar / 43.5 PSI \pm 4.35 PSI (integrated in the Other settings available on request filter element)

Clogging Indicators

• Differential pressure switch incl. visual indicator, setting 1,6 bar / 23 PSI Other clogging indicators available on request

	Flow	Flange			Filter Elem	ent quantity	Arrangement	
Filter Size	I/min/ US GPM	DIN 2501	ANSI B 16.5	SAE 3000 PSI	SRFL-S	SRFL-D	of filter Pa	Page
SRFL-S/D-160	900/240	DN 40	1-1/2	1-1/2	1x RE-160	2x RE-160		
SRFL-S/D-200	900/240	DN 50	2	2	1x RE-200	2x RE-200		130 / 134
SRFL-S/D-300	1400/370	DN 65	2-1/2	2-1/2	1x RE-300	2x RE-300		130 / 134
SRFL-S/D-600	1400/370	DN 80	3	3	1x RE-600	2x RE-600		
SRFL-S/D-1200	4000/1050	DN 100	4	4	2x RE-600	4x RE-600		
SRFL-S/D-1800	4000/1050	DN 125	5	5	3x RE-600	6x RE-600		132 / 136
SRFL-S/D-2400	6000/1580	DN 150	6	6	4x RE-600	8x RE-600		
SRFL-S/D-3600	7000/1850	DN 200	8	8	6x RE-600	12x RE-600		132 / 138



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

In-Line Filters • Type SRFL-S-160 / 200 / 300 / 600

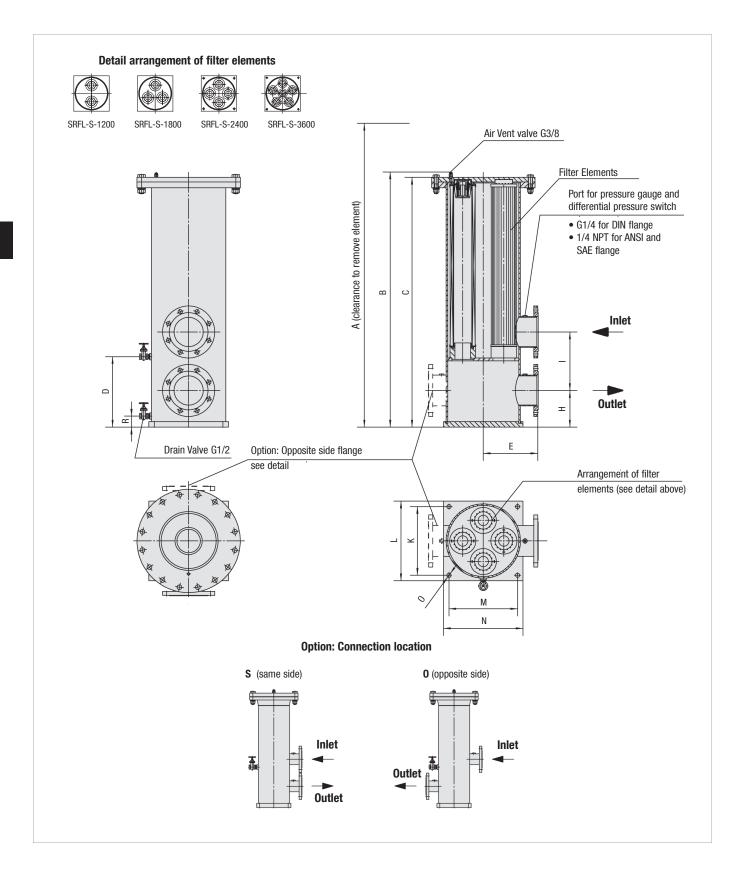
1800-OILSOL

https://oilsolutions.com.au/

In-Line Filters • Type SRFL-S-160 / 200 / 300 / 600

Flange Connection	Filter Size SRFL-S					
	160	200	300	600		
DIN	DN 40	DN 50	DN 65	DN 80		
ANSI	1-1/2	2	2-1/2	3		
SAE	1-1/2	2	2-1/2	3		

Dimensions (mm/in)		Filter Size SRFL-S			
Dilliensions (iiii	1/111)	160	200	300	600
A		885,8	1045,8	1248,7	2126,7
A		34.87	41.17	49.16	83.73
В		607,6	688,7	828,6	1267,6
		23.92	27.12	32.63	49.91
С		584	664	803,9	1242,9
		22.99	26.14	31.65	48.93
D		214	214	285	285
D		8.43	8.43	11.22	11.22
Е		148	148	198	198
		5.83	5.83	7.80	7.80
Н		130	140	150	160
п		5.12	5.51	5.91	6.30
I		155	190	190	220
		6.10	7.48	7.48	8.66
K		150	150	240	240
		5.91	5.91	9.45	9.45
L		125	125	200	200
L		4.92	4.92	7.87	7.87
M		125	125	200	200
IVI		4.92	4.92	7.87	7.87
N		150	150	240	240
IV		5.91	5.91	9.45	9.45
0		11	11	18	18
U		.43	.43	.71	.71
Total Oil Capacit	v (I/aol)	6,0	7,1	22,2	37,1
iotai Oii Gapacit	y (i/gai)	1.59	1.86	5.87	9.80
Weight (kg/lbs)		14,5	15,9	29	34,5
weigiit (kg/ibs)		32	35	64	76
Filter Elements	Designation	RE-160	RE-200	RE-300	RE-600
FILLER EIGHNERITS	Quantity	1 x 1	1 x 1	1 x 1	1 x 1



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

In-Line Filters • Type SRFL-S-1200 / 1800 / 2400 / 3600

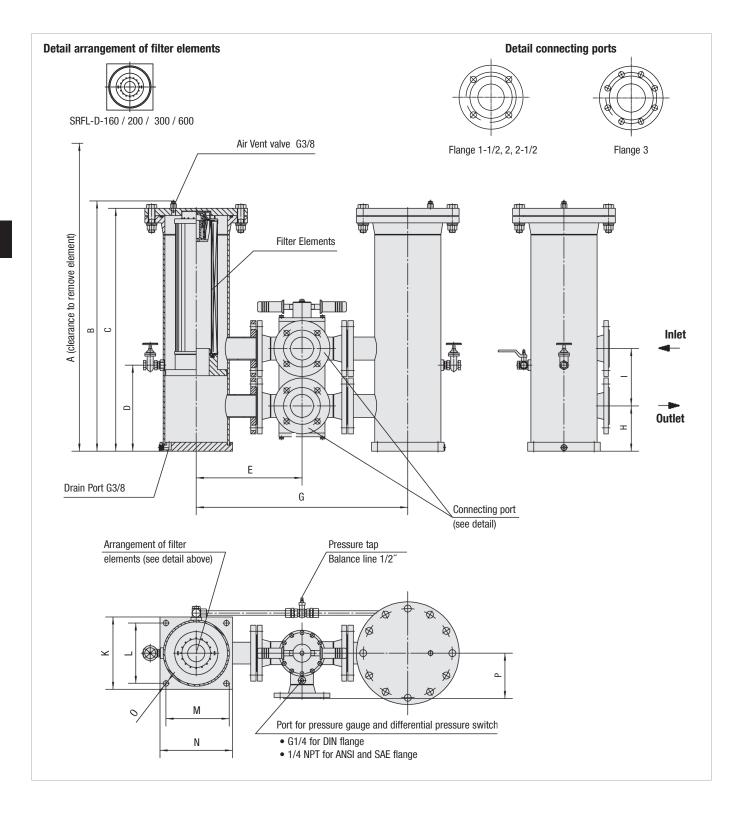
1800-OILSOL

https://oilsolutions.com.au/

In-Line Filters • Type SRFL-S-1200 / 1800 / 2400 / 3600

Flange Connection	Filter Size SRFL-S						
	1200	1800	2400	3600			
DIN	DN 100	DN 125	DN 150	DN 200			
ANSI	4	5	6	8			
SAE	4	5	6	8			

Dimensions (mm	· /:\	Filter Size SRFL-S						
Dimensions (mm	1/111)	1200	1800	2400	3600			
		2176,7	2176,7	2249,1	2249,1			
A		85.70	85.70	88.55	88.55			
В		1319,6	1323,6	1394,8	1392,8			
		51.96	52.11	54.92	54.84			
<u> </u>		1294,6	1294,9	1366,1	1368,1			
C		50.98	50.98	53.78	53.86			
n		275	275	325	325			
D		10.83	10.83	12.80	12.80			
E		273	273	298	398			
		10.75	10.75	11.73	15.67			
Н		190	190	200	252			
		7.48	7.48	7.87	9.92			
1		250	280	320	425			
<u>'</u>		9.84	11.02	12.6	16.73			
K		385	385	435	540			
		15.16	15.16	17.13	21.26			
L		325	325	375	480			
		12.80	12.80	14.76	18.90			
М		325	325	375	480			
141		12.80	12.80	14.76	18.90			
N		385	385	435	540			
		15.16	15.16	17.13	21.26			
0		23	23	23	23			
•		.91	.91	.91	.91			
R		60	60	60	60			
"		2.36	2.36	2.36	2.36			
Total Oil Capacity	(l/nal)	103	103	149	232			
Total on oapaoity	(1/901)	27.21	27.21	39.37	61.30			
Weight (kg/lbs)		86,2	90,7	105,2	154,2			
rroigitt (kg/iba)		190	200	232	340			
Filter Elements	Designation	RE-600	RE-600	RE-600	RE-600			
THE LIGHTONES	Quantity	1 x 2	1 x 3	1 x 4	1 x 6			



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

In-Line Filters • Type SRFL-D-160 / 200 / 300 / 600

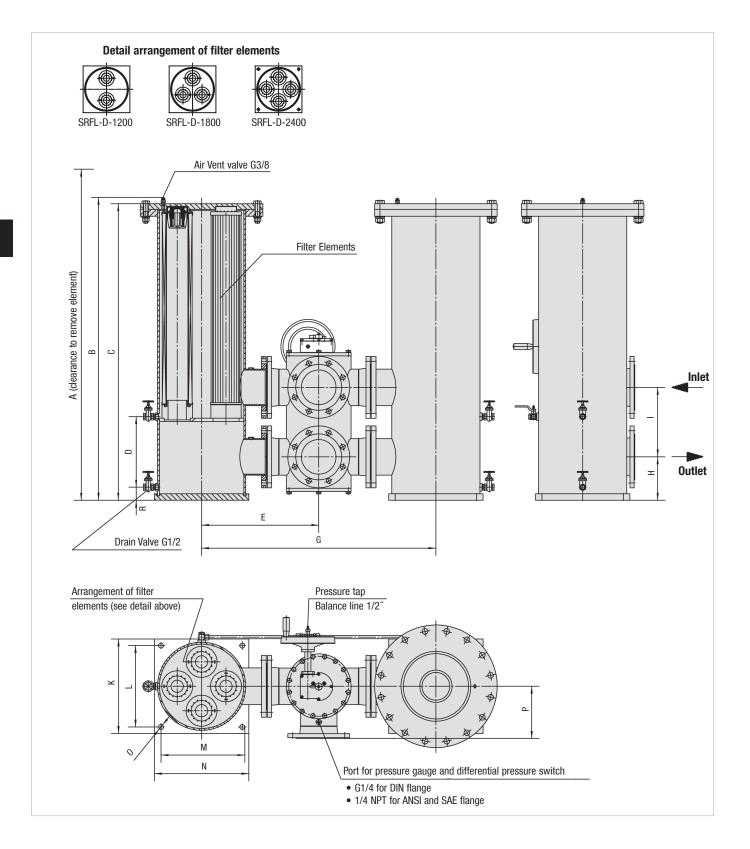
1800-OILSOL 1800-645765

https://oilsolutions.com.au/

In-Line Filters • Type SRFL-D-160 / 200 / 300 / 600

Flange Connection	Filter Size SRFL-D						
Flange Connection	160	200	300	600			
DIN	DN 40	DN 50	DN 65	DN 80			
ANSI	1-1/2	2	2-1/2	3			

Dimensione (m.	(i)	Filter Size SRFL-D							
Dimensions (mi	11/111)	160	200	300	600				
Δ.		885,8	1045,8	1248,7	2126,7				
Α		34.87	41.17	49.16	83.73				
В		607,6	688,7	828,6	1267,6				
		23.92	27.12	32.63	49.91				
С		584	642	803,9	1242,9				
· ·		22.99	25.28	31.65	48.93				
D		214	214	285	285				
D		8.43	8.43	11.22	11.22				
E		260	300	350	375				
E		10.24	11.81	13.78	14.76				
G		520	600	700	750				
u		20.47	23.62	27.56	29.53				
Н		130	140	150	160				
П		5.12	5.51	5.91	6.30				
		155	190	190	220				
1		6.10	7.48	7.48	8.66				
K		150	150	240	240				
N.		5.91	5.91	9.45	9.45				
L		125	125	200	200				
L		4.92	4.92	7.87	7.87				
M		125	125	200	200				
IVI		4.92	4.92	7.87	7.87				
N		150	150	240	240				
IN		5.91	5.91	9.45	9.45				
0		11	11	18	18				
U		.43	.43	.71	.71				
P		110	150	150	175				
Г		4.33	5.91	5.91	6.89				
Total Oil Capacity	ı (l/aəl)	6	7,1	22,2	37,1				
iotai on Gapacit	y (i/yai)	1.59	1.86	5.87	9.80				
Weight (kg/lbs)		43	56,7	84	104				
weight (kg/lbs)		95	125	185	230				
Filter Elements	Designation	RE-160	RE-200	RE-300	RE-600				
FILLET EIGHTERITS	Quantity	2 x 1	2 x 1	2 x 1	2 x 1				



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

In-Line Filters • Type SRFL-D-1200 / 1800 / 2400

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

In-Line Filters • Type SRFL-D-1200 / 1800 / 2400

Flange Connection	Filter Size SRFL-D						
Flange Connection	1200	1800	2400				
DIN	DN 100	DN 125	DN 150				
ANSI	4	5	6				

Filter Size SRFL-D		
1200	1800	2400
2176,7	2176,7	2249,1
85.70	85.70	88.55
1319,6	1323,6	1394,8
51.96	52.11	54.92
1294,9	1294,9	1366,1
50.98	50.98	53.78
275	275	325
10.83	10.83	12.80
475	500	540
18.70	19.69	21.26
950	1000	1080
37.40	39.37	42.52
190	190	200
7.48	7.48	7.87
250	280	320
9.84	11.02	12.60
385	385	435
15.16	15.16	17.13
325	325	375
12.80	12.80	14.76
325	325	375
12.80	12.80	14.76
385	385	435
15.16	15.16	17.13
23	23	23
.91	.91	.91
200	225	240
7.87	8.86	9.45
60	60	60
2.36	2.36	2.36
103	103	149
27.20	27.20	39.30
215	233	263
475	515	580
RE-600	RE-600	RE-600
2 x 2		2 x 4

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

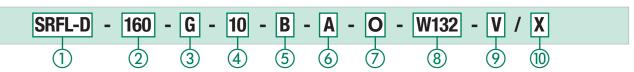
In-Line Filters • Type SRFL-D-3600

Detail arrangement of filter elements Air Vent valve G3/8 A (clearance to remove element) Filter Elements Inlet В **Outlet** Ε Ġ Drain Valve G1/2 Arrangement of filter Pressure tap elements (see detail above) Balance line 1/2 N Port for pressure gauge and differential pressure switch • G1/4 for DIN flange • 1/4 NPT for ANSI and SAE flange

1800-OILSOL

https://oilsolutions.com.au/

In-Line Filters • Type SRFL-D-3600


Flance Connection	Filter Size SRFL-D
Flange Connection	3600
DIN	DN 200
ANSI	8

Dimensions (mm/in)		Filter Size SRFL-D				
Dimensions (mm	/in)	3600				
		2249,1				
Α		88.55				
-		1392,8				
В		54.84				
C		1368,1				
C		53.86				
D		325				
ט		12.80				
E		739				
		29.11				
G		1479				
		58.22				
н		252				
<u> </u>		9.92				
1		425				
		16.73				
K		540				
		21.26				
L		480				
		18.90				
M		480				
		18.90				
N		540				
		21.26				
0		23				
		91				
P		281,4				
		11.08				
R		60				
		2.36 233				
Total Oil Capacity	(I/gal)					
		61.3				
Weight (kg/lbs)		390 860				
	Designation					
Filter Elements	Designation	RE-600				
	Quantity	2x6				

In-Line Filter Housings / Complete Filters • Type SRFL-S / D

In-Line Simplex Housing SRFL-S In-Line Duplex Housing SRFL-D

2 Group

Flow	Size
900 I/min / 240 US GPM	160
900 I/min / 240 US GPM	200
1400 I/min / 370 US GPM	300
1400 I/min / 370 US GPM	600
4000 I/min / 1050 US GPM	1200
4000 I/min / 1050 US GPM	1800
6000 I/min / 1580 US GPM	2400
7000 I/min / 1850 US GPM	3600

③ Filter Material

Material	Max. Δp*collapse	Micron ratings available	Code				
Without filter element	-	-	0				
Inorg. glass fibre Stainless fibre	25 bar / 363 PSI 30 bar / 435 PSI	3, 5, 10, 20	G A				
Filter paper	10 bar / 145 PSI	10, 20	N				
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	S				
* Note: Collance/hurst resistance as nor ISO 2011							

* Note: Collapse/burst resistance as per ISO 2941 Other materials on request.

(4) Micron Rating

•	moron namy	
	3 μm	03
	5 μm	05
	10 μm	10
	20 μm	20
	25 μm	25
	50 μm	50
	100 μm	100
	200 μm	200
	Note: Other micron ratings on request.	

5 Sealing Material

NBR (Buna®)
FKM (Viton®)
Note: Other sealing materials on request.

10 Design Code

Only for information

6 Connection Style

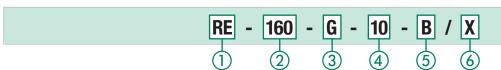
Onemanting Otale	Group	Group							
Connection Style	160	200	300	600	1200	1800	2400	3600	Code
DIN Flange	DN 40	DN 50	DN 65	DN 80	DN 100	DN 125	DN 150	DN 200	D
ANSI Flange	1-1/2	2	2-1/2	3	4	5	6	8	Α
SAE Flange	1-1/2	2	2-1/2	3	4	5	-	-	S

(7) Connection Location

Opposite side*	0
Same side	S
* Note: Not for SRFL-D series	
	Same side

8 Housing Material

Carbon Steel	W132
Stainless Steel	W 4


Clogging Indicator

Without Clogging Indicator

Differential Pressure Switch
with Visual Gauge Indicator

Note: Other indicators on request.

Filter Elements • Type RE

Filter Element Series

② Group

Designation	Filter Element Quantity SRFL-S SRFL-D		Size
RE-160	1x1	2x1	160
RE-200	1x1	2x1	200
RE-300	1x1	2x1	300
RE-600	1x1	2x1	600
RE-600	1x2	2x2	1200
RE-600	1x3	2x3	1800
RE-600	1x4	2x4	2400
RE-600	1x6	2x6	3600

3 Filter Material

Material	Δp*collapse	ratings available	Code
Inorg. glass fibre	25 bar / 363 PSI	3, 5, 10, 20	G
Stainless fibre	30 bar / 435 PSI	3, 3, 10, 20	Α
Filter paper	10 bar / 145 PSI	10, 20	N
Stainless mesh	30 bar / 435 PSI	25, 50, 100, 200	s

* Note: Collapse/burst resistance as per ISO 2941. Other materials on request.

4 Micron Rating

3 μm	03
5 μm	05
10 μm	10
20 μm	20
25 μm	25
50 μm	50
100 μm	100
200 μm	200
Note: Other micron ratings on request.	

(5) Sealing Material

NBR (Buna®)
FKM (Viton®)
Note: Other sealing materials on request

6 Design Code

Only for information

Return-Line Filters • Type SRFL-S / D

Differential Pressure Switch with Visual Gauge Indicator

The switch is used to indicate when the elements needs to be changed. The switch can turn on a light, shut down the machine or any further function controlled by an electrical signal. The gauge visually indicates the differential pressure across the filter elements.

Diameter

■ 100 mm / 3.94 in

Scale

■ 0 ... 1,6 kg/cm²

Connection Thread

■ G1/4

Operating Pressure

Max. 200 bar / 2900 PSI

Temperature Range

■ -20 °C ... +80 °C / -4 °F ... +176 °F

Materials

 Body: Aluminium
 Lens: Glass
 Sealing Material: NBR (Buna-N®) FKM (Viton®)

Protection Rating

IP 65: Dust tight and protected against water jets.

Switch Voltage

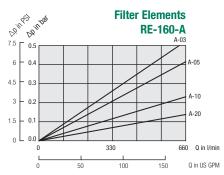
Max. 28 V AC/DC

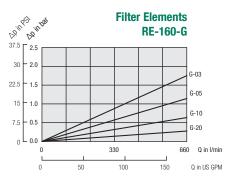
Current On Contact

■ Max. 0,25 A

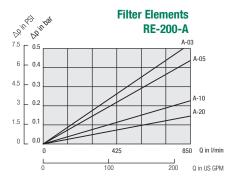
Contact Rating

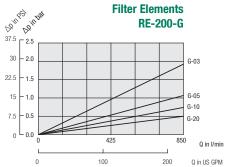
■ 5 VA AC/DC

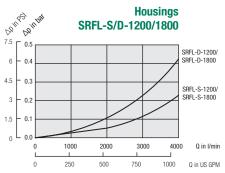

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

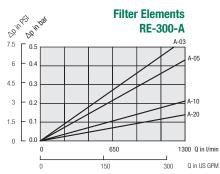


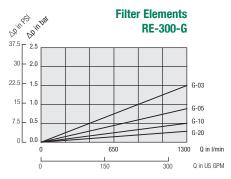
In-Line Filters • Type SRFL-S / D Flow Characteristics

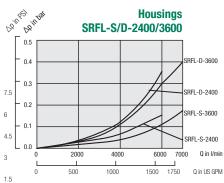

The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30cSt). The characteristics have been determined in accordance to ISO 3968. Multipass filter ratings have been obtained in accordance to ISO 16889. The housing pressure drop is directly proportional to the oil density. Contact STAUFF for details.

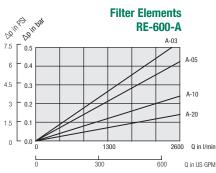


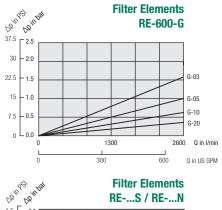












Filter Elements

RE-...S / RE-...N

100%

N-10

S-50

N-20/S-25

Pressure drop of housing including filter elements

 $\Delta p_{total} = \Delta p_{hous} + \Delta p_{Elem} x$ (operating viscosity [mm²/s] / 30mm²/s)

 Δp_{hous} = See diagrams above with

 $\Delta p_{Elem} =$ pressure drop of element at a flow Q/n (at a viscosity of 30 $\text{mm}^2\text{/s}$ and

n= numbers of elements as listed in ordering code filter elements see page 140 and diagrams above.)

Example Data given

= 6000 l/min / 1585 US GPM, SRFL-D-2400 with filter elements RE-600-S-25-B;

operating viscosity = 100 mm²/s

= 6000 l/min; n=4 elements (SRFL-D-2400) Q/n=1500 l/min / 396 gal

= 0,35 bar / 5.07 PSI, Δp_{Elem} =0,03 bar / 0.44 PSI

 $\Delta p_{total}^{}~=0.35$ bar + 0.03 bar x (100 mm²/s / 30mm²/s) Pressure drop: = 0,45 bar / 6.53 PSI

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

sales@oilsolutions.com.au

20 40% 609 80%

percentage of the

Q as

Dainbar

1.5

1.2 0.08

0.9

In-Line Filters • Type SRFL-SW

Product Description

STAUFF In-Line Filters SRFL-SW are specially developed for direct installation into the pipelines of industrial water cycles. Depending on their size, SRFL-SW filter housings are suitable for nominal flow rates up to 13330 l/min / 3521 US GPM at a maximum operating pressure of 16 bar / 232 PSI. The SRFL-SW have been designed to be used in the steel industry for pre-filtering or coarse filtering in descaling plants. For use with demineralised water we recommend the In-Line Filters SRFL-SW in Stainless Steel. The filter element construction as a Stainless Steel basket screen filter ensures a long service life.

Technical Data

Construction

- Designed for direct installation into pipelines
- Simplex version, Duplex on request

Materials

• Filter housing: Carbon Steel

Stainless Steel (on request)

■ Sealing: PTFE / NBR (Buna-N®)

PTFE / FKM (Viton®)

Port Connections

ANSI or DIN flange

Operating Pressure

Max. 16 bar / 232 PSI

Flow Rating

Max. 13330 I/min / 3521 US GPM

Temperature Range

- -10 °C ... +100 °C / +14 °F ... +212 °F
- **Media Compatibility**
- Water
- Coolant
- Others on request

Options and Accessories

Filter Elements

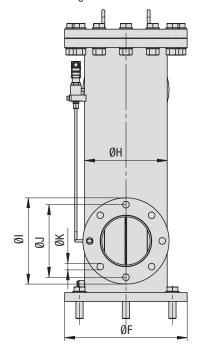
Stainless Steel basket screen filters from STAUFF's REL product line are used as filter elements, which are designed for flow from the inside to the outside. The filter elements are available in micron ratings between 50 μ m and 200 μ m. Solid particles collected in the basket are prevented from reaching the clean side of the water cycle when being replaced.

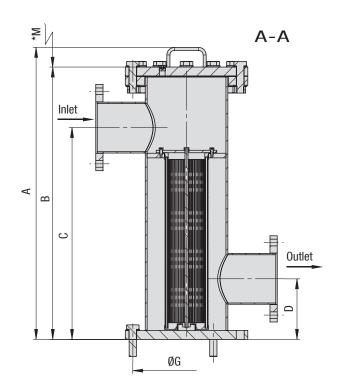
Clogging Indicator

- Differential Pressure Gauge
- visual / electrical / visual-electrical (see page 54)

Drain Valve

· Available as an option: Integrated into the filter housing

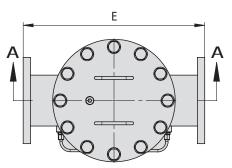

1800-OILSOL 1800-645765 https://oilsolutions.com.au/



In-Line Filters • Type SRFL-SW-160 /-300 /-600

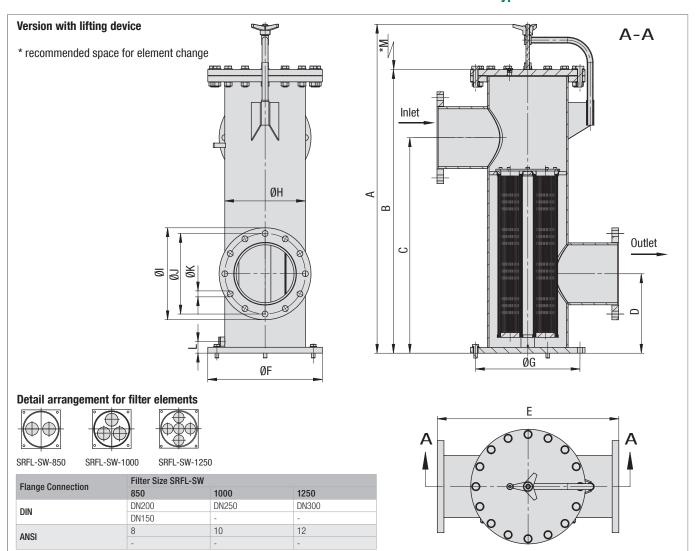
Version with handle

* recommended space for element change



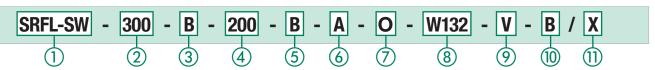
Detail arrangement of filter elements SRFL-SW

°	9 SKLT-9A
	-160
	-300
	-600


Flange Connection	Filter Size SRFL-SW		
riange confidention	160	300	600
DIN	DN80	DN100	DN150
	DN50	DN125	-
ANCI	2	4	6
ANSI	3	5	-

Dimensions (mm/in)	Filter Size SRFL-SW		
Dimensions (mm/in)	160	300	600
Filter Housing Material	CS/SS	CS/SS	CS/SS
^	840	965	965
Α	33.07	38.00	38.00
D	775	900	900
В	30.51	35.43	35.43
С	600	700	700
· ·	23.62	27.56	27.56
D	250	200	200
U	9.84	7.87	7.87
E	440	500	600
_	17.32	19.69	23.62
ØE	340	340	405
ØF	13.39	13.39	15.94
ØG	295	295	355
Ød .	11.61	11.61	13.98
ØН	219,1	219,1	273
VII	8.63	8.63	10.75
ØI	200	220	285
ØI	7.87	8.66	11.22
ØJ	160	180	240
6 3	6.30	7.09	9.45
øк	18	18	22
ØK .	.71	.71	.87
M	400	650	650
M	15.75	25.60	25.60
Housing Capacity (I / US GPM)	26,2	31,3	52,9
	6.9	8.3	14
Filter Elements Designation	REL-100	REL-100	REL-150
Quantity	1	1	1

In-Line Filters • Type SRFL-SW-850 /-1000 /-1250



Dimensions (mm	/in)	Filter Size SRFL-S	SW			
וווווו) פווטופוושוווע	/ 111)	850		1000	1000	
Filter Housing Ma	aterial	CS	SS	CS	SS	
A		1154	1150	1442	1450	1950
1		45.43	45.28	56.77	57.09	76.77
В		962	950	1250	1250	1740
3		37.87	37.40	49.21	49.21	68.50
n		750	750	950	950	1400
C		29.53	29.53	37.40	37.40	55.12
n		300	300	350	350	400
D		11.81	11.81	13.78	13.78	15.75
		700	700	800	800	1100
=		27.56	27.56	31.50	31.50	43.31
ØF		520	505	520	505	640
ØF		20.47	19.88	20.47	19.88	25.20
ØG		470	460	470	460	585
JG		18.50	18.11	18.50	18.11	23.03
)H		355,6	355,6	355,6	355,6	508
		14.00	14.00	14.00	14.00	20.00
		340	340	405	405	460
ØI		13.39	13.39	15.94	15.94	18.11
X 1		295	295	355	355	410
ØJ		11.61	11.61	13.98	13.98	16.14
31/		22	22	26	26	26
ØΚ		.87	.87	1.02	1.02	1.02
		650	650	850	850	850
И		25.59	25.59	33.46	33.46	33.46
		55	51	55	51	82
-		2.17	2.01	2.17	2.01	3.23
Invalue Constitu	/L/LIC CDM	96,5	96,5	138,6	138,6	392
Housing Capacity	(1 / US GPM)	25.5	25.5	36.6	36.6	103.6
Filton Florence :	Designation	REL-150	REL-150	REL-250	REL-250	REL-250
Filter Elements	Quantity	2	2	3	3	5

In-Line Filter Housing / Complete Filters • Type SRFL-SW

3 Filter Material

Material	Available	Code
Without filter element	-	0
Stainless mesh	50, 80, 100, 125, 200	В

4

Micron Rating	
50 μm	50
80 μm	80
100 μm	100
125 μm	125
200 μm	200
Note: Other micron ratings on request.	

(5) Sealing Material PTFE / NBR (Buna®) В PTFE / FKM (Viton®) Note: Other sealing materials on request.


Clogging Indicator Without Clogging Indicator Differential Pressure Gauge Note: Other clogging indicators on request.

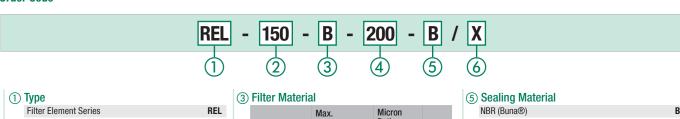
(6) Connection Style

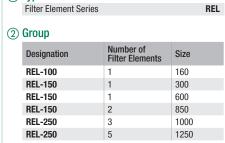
(7) Connection Location

Connection	Group						
Style	160	300	600	850	1000	1250	Code
DIN	DN80	DN100	DN150	DN200	DN250	DN300	D
flange	DN50	DN125	-	DN150	-	-	D1
ANSI	2"	4"	6"	8"	10"	12"	Α
flange	3"	5"	_	_	-	_	A1

	Opposite side	0
8	Housing Material	
	Carbon Steel	W132
	Stainless Steel	W4

11) Design Code Only for information


Filter Elements • Type REL


Product Description

Stainless Steel basket screen filters from STAUFF's REL product line are used as filter elements, which are designed for flow from the inside to the outside. Micron ratings ranging from 50 μm to 200 μm are available. Solid particles collected in the basket are prevented from reaching the clean side of the water cycle when being replaced. The filter element construction as a Stainless Steel basket screen filter ensures a long service life.

Order Code

INDI	(Dullaw)		U
FKIV	I (Viton®)		V
6 Des	sign Code		
Only	for information		Х

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

In-Line Filters • Type SRFL-SW

Differential Pressure Gauge

A visual clogging indicator, the function of which is based on the differential pressure between the contaminated and clean side of the filter elements, is available as an option, and enables a convenient determination of the condition of the basket filter.

Nominal Size

■ 80 mm / 3.15 in

Range of Scale

■ 0 ... 1 bar / 0 ... 14.5 PSI

Operating Pressure

Max. 100 bar / 1450 PSI

Permissible Temperatures

Ambient: 0 ... +60 °C / 0 ... +140 °F
 Media: up to +100 °C / +212 °F

Material

Housing: Die-cast Aluminium, black

Sight glass: AcrylicIndicator: Aluminium, black

Protection Rating

• IP 54 protection rating: Dust protected and protected against splashing water

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

	Overview Spin-On Filters	150		Tank Top Spin-On Filter Heads	164 - 167
	Quick Reference Guide Spin-On Filter Heads Spin-On Filter Elements	151	0	SSFT-12B Max. 7 bar / 100 PSI Max. 75 l/min / 20 US GPM	164
	Spin-On Filter Heads	152 - 158		SSFT-12 Max. 7 bar / 100 PSI Max. 75 l/min / 20 US GPM	165
	SLF-02 / 03 / 04 Max. 14 bar / 200 PSI Max. 26 I/min / 7 US GPM	152		SSFT-20B Max. 7 bar / 100 PSI Max. 200 l/min / 53 US GPM	166
a De	SAF-05 / 06 / 07 / 11 Max. 14 bar / 200 PSI Max. 90 I/min / 25 US GPM	153		SSFT-20 Max. 7 bar / 100 PSI Max. 200 l/min / 53 US GPM	167
1	SAF-10 / 13 Max. 14 bar / 200 PSI Max. 128 l/min / 34 US GPM	154		Spin-On Filter Elements	168 - 173
9 11	SSF-12 Max. 12 bar / 174 PSI Max. 90 I/min / 25 US GPM	155		Overview Spin-On Filter Elements	168
	SSF-20L Max. 12 bar / 174 PSI Max. 225 I/min / 60 US GPM	156		SFC-35 / 36 SFCT-35 / 36	169
	SSF-100 / 120 / 120L / 130 / 160 Max. 14 bar / 200 PSI Max. 225 I/min / 60 US GPM	157		SFC-57 / 58 SFCT-57 / 58	170
	SSF-150 / 180 Max. 14 bar / 200 PSI Max. 300 l/min / 80 US GPM	158		SF-63	171
	Double Spin-On Filter Heads	159 - 163		SF-65	172
5 5 6	SSF-24B Max. 12 bar / 174 PSI Max. 454 l/min / 120 US GPM	159	· ·	SF-67	173
	SSF-24N / 24S Max. 12 bar / 174 PSI Max. 454 I/min / 120 US GPM	160		Flow Characteristics	174 - 176
400	SSF-25B Max. 12 bar / 174 PSI Max. 454 l/min / 120 US GPM	161		SFC/SFCT-35 / 36 SFC/SFCT-57 / 58 SF-63	174
	SSF-25FM Max. 12 bar / 174 PSI Max. 454 l/min / 120 US GPM	162		SF-65	175
	SSF-25 Max. 12 bar / 174 PSI Max. 454 l/min / 120 US GPM	163		SF-67	176
				Clogging Indicators	177

www.stauff.com/9/en/#149

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Description

STAUFF provides a complete range of Spin-On Filters which can be used either as Suction-Line filters or as Return-Line filters for low pressure applications. The various ranges meet international standards.

Material

• Filter head: Aluminium

Media Compatibility

• Mineral oils, others on request

Connections

- BSP
- NPT
- SAE flange
- SAE thread
- Other ports connections on request

Operating Pressure

Max. 14 bar / 200 PSI

Spin-On Filter Heads designed for in-line assembly

Spin-On Double Filter Heads

Temperature Range

Nominal Flow Rate

Clogging Indicators

Private Labelling

Electrical clogging switch

• Other types are available on request

- -30 °C ... +100 °C / -22 °F ... +212 °F

■ Max. 460 I/min / 120 US GPM

Options and Accessories

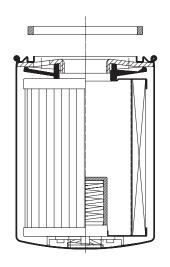
Visual clogging indicator with coloured segments

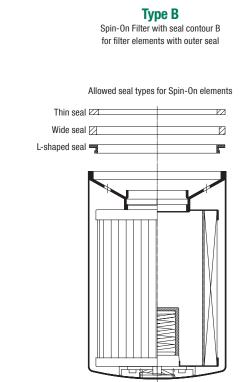
• On request, the filter elements can be printed with a private label

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

sales@oilsolutions.com.au


www.stauff.com/9/en/#150



Spin-On Filters • Quick Reference Guide

Type A

Spin-On Filter with seal contour A for filter elements with inner seal

Spin-On Filters Quick Reference Guide Spin-On Filter Elements (see page ...) Spin-On Filter Heads SECT-35 SECT-57 Max. Flow Rate* | Catalog | Seal Contour SFC-35 SFC-57 SF-63 Series Size SF-65 SF-67 Port Spigot I/min US GPM Page Type A Type B SFC-36 SFC-58 SFCT-36 SFCT-58 1/4 NPT SLF 02 3/4-16 UNF 171 19 5 152 SLF 03 3/8 NPT 3/4-16 UNF 19 5 152 171 SLF 04 9/16-18 UN 3/4-16 UNF 26 152 171 SAF 05 1/2 NPT 1-12 UNF 57 15 153 172 1-12 UNF 172 SAF 06 3/4-16 UN 57 15 153 Χ 3/4 NPT 1-12 UNF SAF 07 90 25 153 172 SAF 11 1-1/16-12 UN 1-12 UNF 90 25 153 Χ 172 SAF 10 1 NPT 1-12 UNF 128 34 154 172 SAF 1-5/16-12 UN 1-12 UNF 128 34 154 172 13 SSF 12 G3/4 G3/4 90 25 155 169 Х SSF 20L G1-1/4 G1-1/4 + 1-1/2-16 UN 225 60 156 173 170 Χ SSF 100 1 NPT G1-1/4 + 1-1/2-16 UN | 170 45 157 Χ 173 170 SSF 120L 1-1/4 NPT G1-1/4 + 1-1/2-16 UN 60 157 173 170 1-1/4 NPT G1-1/4 + 1-1/2-16 UN 225 173 170 SSF 120 60 157 SSF 130 1-5/16-12 UN G1-1/4 + 1-1/2-16 UN 225 60 157 Χ 173 170 SSF 160 1-5/8-12 UN G1-1/4 + 1-1/2-16 UN 225 60 157 173 170 SSF 150 1-1/2 NPT 1-1/2-16 UN 300 80 158 173 SSF 180 1-7/8-12 UN 1-1/2-16 UN 300 80 158 173 24B G1-1/2 G1-1/4 + 1-1/2-16 UN 454 120 159 173 170 SSF х Х G1-1/4 + 1-1/2-16 UN 454 SSF 24N 1-1/2 NPT 120 160 173 170 SSF 24S 1-7/8-12 UN G1-1/4 + 1-1/2-16 UN 454 120 160 173 170 G1-1/2 25B G1-1/4 170 SSF 454 120 161 Χ 173 SSF 25FM 1-1/2 SAE Flange 1-1/2-16 UN 454 120 162 173 170 Χ 1-1/2 NPT and SSF 25 G1-1/4 + 1-1/2-16 UN 454 120 163 173 170 2 SAE Flange SSFT 12B G3/4 G3/4 75 20 164 169 SSFT 12 3/4 NPT G3/4 75 20 165 169 SSFT 20B G1-1/2 G1-1/4 + 1-1/2-16 UN 200 166 Х 170 170 SSFT 20 1-1/2 NPT G1-1/4 + 1-1/2-16 UN 200 53 167

* Note: Reflects nominal flow rate for Return-Line application. Actual flow rate will depend on selected element and the viscosity of the fluid

STAUFF

Spin-On Filter Heads - SLF-02 / 03 / 04

Technical Data

Construction

■ In-line Spin-On filter head

Material

Aluminium

Port Connections

- NPT
- SAE 0-ring thread

Flow Rate

- 26 I/min / 7 US GPM for Return-Line application
- 7 I/min / 2 US GPM for Suction-Line application

Operating Pressure

- Max. 14 bar / 200 PSI
- Max. 5,5 bar / 80 PSI differential pressure (for any application without bypass valve)

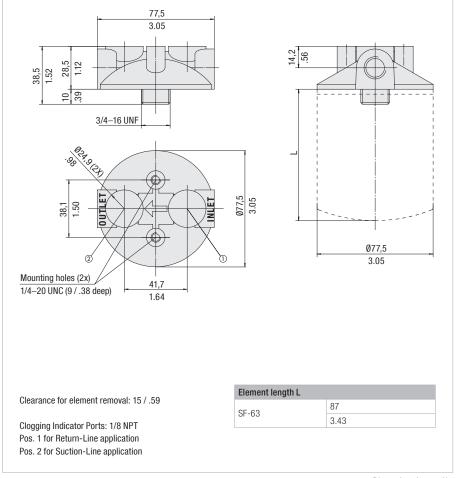
Temperature Range

■ -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

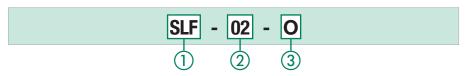


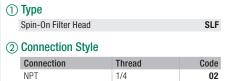
Filter Elements

For use with SF-63 series elements
 For element types with seal contour type A
 For element types and flow characteristics
 see page 174

The element is not part of the scope of delivery

Dimensions




Dimensions in mm / in

Order Code

NPT

SAE

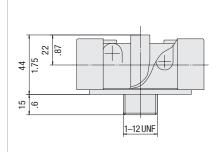
3/8

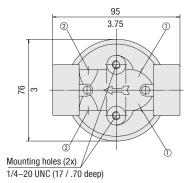
9/16-18

04

③ Clogging Indicator Port Options

Note: Standard clogging indicator port is 1/8 NPT.


1800-OILSOL 1800-645765 https://oilsolutions.com.au/



Dimensions

Spin-On Filter Heads = SAF-05 / 06 / 07 / 11

Clearance for element removal: 19 / .75

Clogging Indicator Ports: 1/8 NPT

Pos. 1 for Return-Line application

093,2 3.67

38,1

Element length L	
L1 SF-65 short elements	147
LI SF-03 SHOLL EIGHEIRS	5.76
LOCE CE long alamanta	204
L2 SF-65 long elements	8

Pos. 2 for Suction-Line application

Technical Data

Construction

■ In-line Spin-On filter head

Material

Aluminium

Port Connections

NPT

SAE 0-ring thread

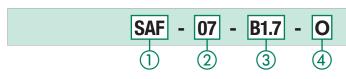
low Rate

- 90 I/min / 25 US GPM for Return-Line application
- 23 I/min / 6 US GPM for Suction-Line application

Operating Pressure

- Max. 14 bar / 200 PSI
- Max. 5,5 bar / 80 PSI differential pressure (for any application without bypass valve)

Temperature Range


■ -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

Dimensions in mm / in

Mineral oils, other fluids on request
 Options and Accessories

Order Code

SAF

1 Type Spin-On Filter Head

② Connection Style

-			
Connection	Thread	Code	
NPT	1/2	05	
SAE	3/4-16	06	
NPT	3/4	07	
SAE	1-1/16-12	11	

3 Bypass Options

No bypass	0
0,2 bar / 3 PSI	B0.2
0,35 bar / 5 PSI	B0.35
1 bar / 15 PSI	B1.0
1,7 bar / 25 PSI	B1.7

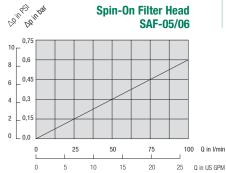
4 Clogging Indicator Port Options

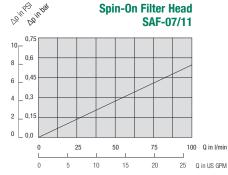
No clogging indicator port	0
Clogging indicator port drilled for Return-Line application	1
Clogging indicator port drilled for Suction-Line application	2
All clogging indicator ports drilled	4
Special	9

Note: Standard clogging indicator port is 1/8 NPT.

Branch Control of the Control of the

Filter Elements


For use with SF-65 series elements
 For element types with seal contour type A
 For element types and flow characteristics see page 175
 The element is not part of the scope of delivery


Valve

Bypass valve (integrated in the head): Optional

Clogging Indicators

For clogging indicator types see page 177

ESTAUFF ®

Spin-On Filter Heads • SAF-10 / 13

Technical Data

Construction

■ In-line Spin-On filter head

Material

Aluminium

Port Connections

- NPT
- SAE 0-ring thread

Flow Rate

- 128 I/min / 34 US GPM for Return-Line application
- 30 I/min / 8 US GPM for Suction-Line application

Operating Pressure

- Max. 14 bar / 200 PSI
- Max. 5,5 bar / 80 PSI differential pressure (for any application without bypass valve)

Temperature Range

 \blacksquare -30 °C ... +100 °C / -22 °F ... +212 °F

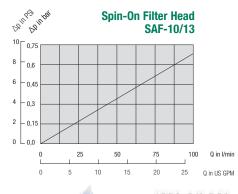
Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

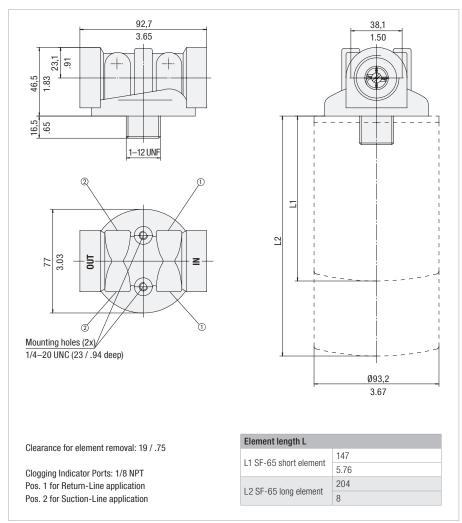
Filter Elements

For use with SF-65 series elements
 For element types with seal contour type A
 For element types and flow characteristics see page 175
 The element is not part of the scope of delivery


Valve

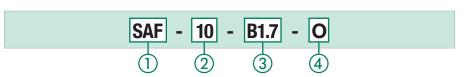
Bypass valve (integrated in the filter head): Optional

Clogging Indicators


• For clogging indicator types see page 177

OIL SOLUTIONS

1800-OILSOL 1800-645765


Dimensions

Dimensions in mm / in

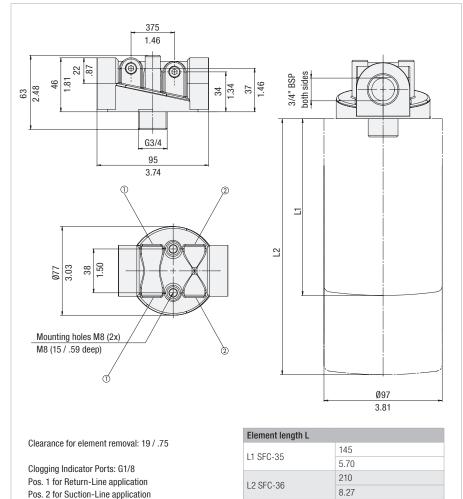
Order Code

1) Type

4 Clogging Indicator Port Options

	No clogging indicator port	0
	Clogging indicator port drilled for Return-Line application	1
	Clogging indicator port drilled for Suction-Line application	2
	All clogging indicator ports drilled	4
	Special	9

Note: Standard clogging indicator port is 1/8 NPT.


https://oilsolutions.com.au/

Dimensions

Spin-On Filter Heads • SSF-12

B1.7

SSF

Code

12

0

B0.2

B1.7

Technical Data

Construction

■ In-line Spin-On filter head

Material

Aluminium

Port Connections

BSP

Flow Rate

- 90 I/min / 25 US GPM for Return-Line application
- 23 I/min / 6 US GPM for Suction-Line application

Operating Pressure

- Max. 12 bar / 174 PSI
- Max. 5 bar / 72.5 PSI differential pressure (for any application without bypass valve)

Temperature Range

■ -30 °C ... +100 °C / -22 °F ... +212 °F

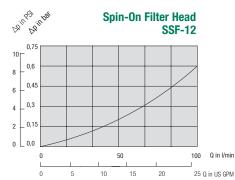
Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

Filter Elements

For use with SFC-35/36 series elements
 For element types with seal contour type A
 For element types and flow characteristics see page 174
 The element is not part of the scope of delivery


Valv

4

Dimensions in mm / in

Clogging Indicators

■ For clogging indicator types see page 177

OIL SOLUTIONS

Note: Other settings available on request.

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

4 Clogging Indicator Port Options

All clogging indicator ports drilled

⑤ Design Code

Only for information

Note: Standard clogging indicator port is G1/8.

sales@oilsolutions.com.au

Order Code

① Type

Spin-On Filter Head

(2) Connection Style

3 Bypass Options

0,2 bar / 3 PSI

1,7 bar / 25 PSI

No bypass

3/4

Spin-On Filter Heads - SSF-20L

Technical Data

Construction

■ In-line Spin-On filter head

Material

Aluminium

Port Connections

BSP

Flow Rate

- 225 I/min / 60 US GPM for Return-Line application
- 46 I/min / 12 US GPM for Suction-Line application

Operating Pressure

- Max. 12 bar / 174 PSI
- Max. 5 bar / 72.5 PSI differential pressure (for any application without bypass valve)

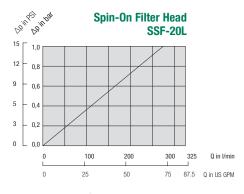
Temperature Range

■ -30 °C ... +100 °C / -22 °F ... +212 °F

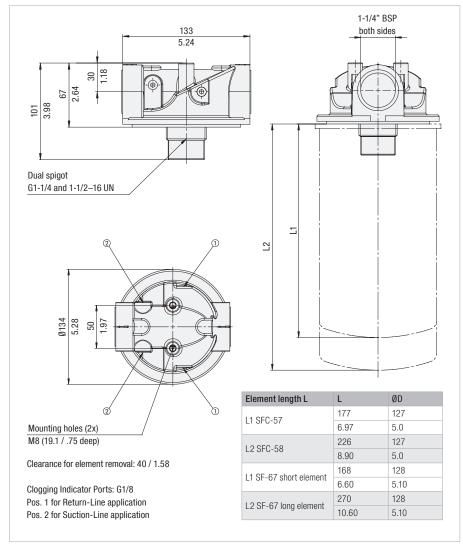
Media Compatibility

· Mineral oils, other fluids on request

Options and Accessories

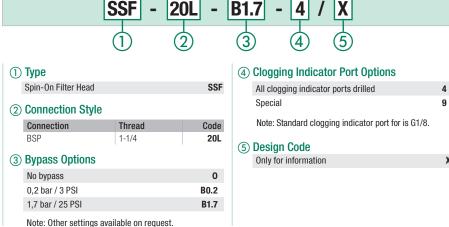

Filter Elements

• For use with SF-67 and SFC-57/58 series elements For element types with seal contour type A and B For element types and flow characteristics see page 176 for SF-67 and page 174 for SFC-57/58. The element is not part of the scope of delivery


Bypass valve (integrated in the filter head): Optional

Clogging Indicators

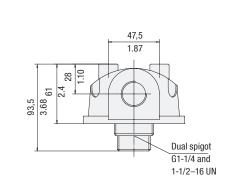
• For clogging indicator types see page 177

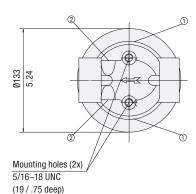


Dimensions

Dimensions in mm / in

Order Code


1800-OILSOL 1800-645765


https://oilsolutions.com.au/

Spin-On Filter Heads • SSF-100 / 120 / 120L / 130 / 160

Dimensions

2 ØD

133

5.24

Element length L	L	ØD
L1 SFC-57	177	127
LI 3FU-31	6.97	5.0
L2 SFC-58	226	127
	8.90	5.0
L1 SF-67 short element	168	128
	6.60	5.10
LOCE C7 long alamont	270	128
L2 SF-67 long element	10.00	F 40

10.60 5.10

Technical Data

Construction

■ In-line Spin-On filter head

Material

Aluminium

Port Connections

NPT

SAE 0-ring thread

Flow Rate

- 225 I/min / 60 US GPM for Return-Line application
- 46 I/min / 12 US GPM for Suction-Line application

Operating Pressure

- Max. 12 bar / 174 PSI
- Max. 5 bar / 72.5 PSI differential pressure (for any application without bypass valve)

Temperature Range

 \blacksquare -30 °C ... +100 °C / -22 °F ... +212 °F

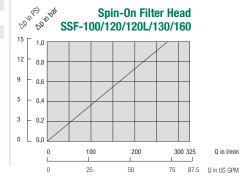
Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

Filter Elements

• For use with SF-67 and SFC-57/58 series elements For element types with seal contour type A and B $\,$ For element types and flow characteristics see page 176 for SF-67 and page 174 for SFC-57/58. The element is not part of the scope of delivery

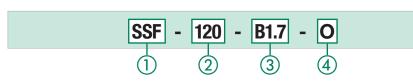

Valve

Dimensions in mm / in

Bypass valve (integrated in the filter head): Optional

Clogging Indicators

■ For clogging indicator types see page 177


sales@oilsolutions.com.au

Clearance for element removal: 40 / 1.58

Clogging Indicator Ports: 1/8 NPT Pos. 1 for Return-Line application

Pos. 2 for Suction-Line application

Order Code

(1) Type

Spin-On Filter Head

(2) Connection Style

Connection	Thread	Code
NPT	1	100
NPT	1-1/4	120L
NPT	1-1/4	120
SAE	1-5/16-12	130
SAE	1-5/8-12	160

3 Bypass Options

•		
	No bypass	0
	0,2 bar / 3 PSI	B0.2
	0,35 bar / 5 PSI	B0.35
	1 bar / 15 PSI	B1.0
	1,7 bar / 25 PSI	B1.7

(4) Clogging Indicator Port Options

No clogging indicator port	0
Clogging indicator port drilled for Return-Line application	1
Clogging indicator port drilled for Suction-Line application	2
All clogging indicator ports drilled	4
Special	9

Note: Standard clogging indicator port is 1/8 NPT.

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

ESTAUFF ®

Spin-On Filter Heads • SSF-150 / 180

Technical Data

Construction

■ In-line Spin-On filter head

Material

Aluminium

Port Connections

- NPT
- SAE 0-ring thread

Flow Rate

- 300 I/min / 80 US GPM for Return-Line application
- 113 l/min / 30 US GPM for Suction-Line application

Operating Pressure

- Max. 14 bar / 200 PSI
- Max. 5,5 bar / 80 PSI differential pressure (for any application without bypass valve)

Temperature Range

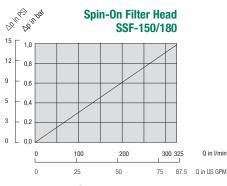
■ -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

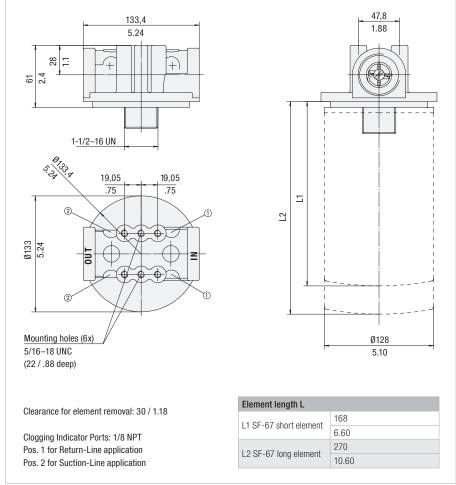
• Mineral oils, other fluids on request

Options and Accessories

Filter Elements

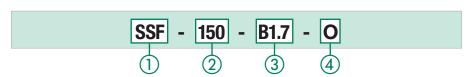

For use with SF-67 series elements
 For element types with seal contour type B
 For element types and flow characteristics see page 176
 The element is not part of the scope of delivery

Valve


Bypass valve (integrated in the filter head): Optional

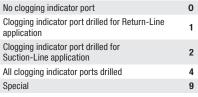
Clogging Indicators

• For clogging indicator types see page 177



Dimensions

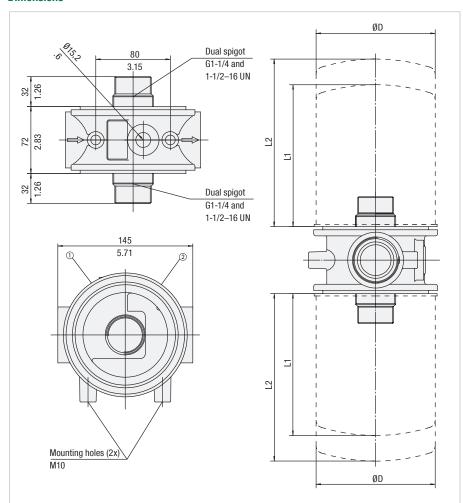
Dimensions in mm / in


Order Code

3 Bypass Options No bypass 0 0,2 bar / 3 PSI B0.2 0,35 bar / 5 PSI B0.35 1 bar / 15 PSI B1.0 1,7 bar / 25 PSI B1.7

4 Clogging Indicator Port Options

Note: Standard clogging indicator port is 1/8 NPT.



1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Dimensions

Clearance for element removal: 40 / 1.58

Clogging Indicator Port: G1/8 Pos. 1 for Return-Line application Pos. 2 for Suction-Line application

Element length L	L	ØD
L1 SFC-57	177	127
LI 5FG-57	6.97	5.0
L2 SFC-58	226	127
	8.90	5.0
I 1 SF-67 short element	168	128
LI SE-07 SHOLL EIGHIGH	6.60	5.10
1005 071	270	128
L2 SF-67 long element	10.60	5.10

Dimensions in mm / in

Double Spin-On Filter Heads • SSF-24B

Technical Data

Construction

■ In-line Double Spin-On filter head

Material

Aluminium

Port Connections

BSP

Flow Rate

- 454 I/min / 120 US GPM for Return-Line application
- 132 I/min / 35 US GPM for Suction-Line application

Operating Pressure

- Max. 12 bar / 174 PSI
- Max. 5 bar / 72.5 PSI differential pressure (for any application without bypass valve)

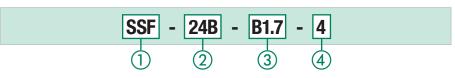
Temperature Range

■ -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

Mineral oils, other fluids on request

Options and Accessories



Filter Elements

■ For use with SF-67 and SFC-57/58 series elements For element types with seal contour type A and B For element types and flow characteristics see page 176 for SF67 and page 174 for SFC-57/58 The element is not part of the scope of delivery

Order Code

SSF

1) Type Double Spin-On Filter Head

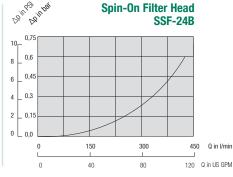
2 Connection Style Connection Code 1-1/2 24B

3 Bypass Options

No bypass	0
0,2 bar / 3 PSI	B0.2
1,7 bar / 25 PSI	B1.7

Note: Other settings available on request.

4 Clogging Indicator Port Options


All clogging indicator ports drilled 4

Note: Standard clogging indicator port is G1/8.

Clogging Indicators

• For clogging indicator types see page 177

Bypass valve (integrated in the head): Optional

Double Spin-On Filter Heads • SSF-24N / 24S

Technical Data

Construction

■ In-line Double Spin-On filter head

Material

Aluminium

Port Connections

- NPT
- SAE flange
- SAE 0-ring thread

Flow Rate

- 454 I/min / 120 US GPM for Return-Line application
- 132 I/min / 35 US GPM for Suction-Line application

Operating Pressure

- Max. 12 bar / 174 PSI
- Max. 5 bar / 72.5 PSI differential pressure (for any application without bypass valve)

Temperature Range

-30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

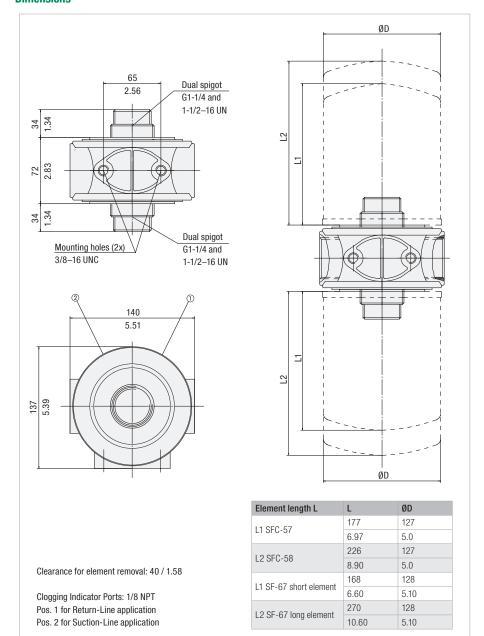
• Mineral oils, other fluids on request

Options and Accessories

Filter Elements

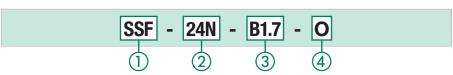
■ For use with SF-67 and SFC-57/58 series elements For element types with seal contour type A and B For element types and flow characteristics see page 176 for SF-67 and page 174 for SFC-57/58 The element is not part of the scope of delivery

Valve


Bypass valve (integrated in the head): Optional

Clogging Indicators

• For clogging indicator types see page 177



Dimensions

Dimensions in mm / in

Order Code

Connection	Thread	Code
NPT	1-1/2	24N
SAE	1-7/8-12	248

3 Bypass Options

No bypass	0
0,2 bar / 3 PSI	B0.2
0,35 bar / 5 PSI	B0.35
1 bar / 15 PSI	B1.0
1,7 bar / 25 PSI	B1.7

4 Clogging Indicator Port Options

	No clogging indicator port	0	
	Clogging indicator port drilled for Return-Line application	1	
	Clogging indicator port drilled for Suction-Line application	2	
	All clogging indicator ports drilled	4	
	Special	9	

Note: Standard clogging indicator port is 1/8 NPT.

60 2.36

134

Dimensions

150 5.91 1-1/2" BSP both sides 1.87 3.43 87 30 2 **Dual spigot** G1-1/4 and 1-1/2-16 UN ØD

284 11.18

Clearance for element removal: 40 / 1.58

Mounting, holes (3x)

M10

Clogging Indicator Port: G1/8 Pos. 1 for Return-Line application Pos. 2 for Suction-Line application

Element length L	L	ØD	
14.050.57	177	127	
L1 SFC-57	6.97	5.0	
L2 SFC-58	226	127	
	8.90	5.0	
I 1 SF-67 short element	168	128	
LI OL-OL PHOLI GIGILIGIII	6.60	5.10	
1.0.0F 07.1	270	128	
L2 SF-67 long element	10.60	5.10	

Double Spin-On Filter Heads • SSF-25B

Technical Data

Construction

■ In-line Double Spin-On filter head

Material

Aluminium

Port Connections

■ BSP

Flow Rate

- 454 I/min / 120 US GPM for Return-Line application
- 132 I/min / 35 US GPM for Suction-Line application

Operating Pressure

- Max. 12 bar / 174 PSI
- Max. 5 bar / 72.5 PSI differential pressure (for any application without bypass valve)

Temperature Range

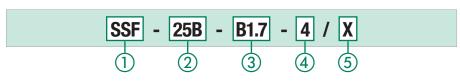
■ -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

Filter Elements


■ For use with SF-67 and SFC-57/58 series elements For element types with seal contour type A and B For element types and flow characteristics see page 176 for SF-67 and page 174 for SFC-57/58 The element is not part of the scope of delivery

Dimensions in mm / in Bypass valve (integrated in the head): Optional

• For clogging indicator types see page 177

Clogging Indicators

Order Code

1) Type

Double Spin-On Filter Head SSF

2 Connection Style

Connection	Thread	Code
BSP	1-1/2	25B

3 Bypass Options

No bypass		0
0,2 bar / 3 PSI		B0.2
1,7 bar / 25 PSI		B1.7

Note: Other settings available on request.

4 Clogging Indicator Port Options

All clogging indicator ports drilled	4
Special	9
Note: Standard cloqqing indicator port is	G1/8.

5 Design Code

Only for information

Spin-On Filter Head SSF-25B 0,6 0,45 0.3 0 Q in I/min 120 Q in US GPM

Double Spin-On Filter Heads • SSF-25FM

Dimensions

Technical Data

Construction

■ In-line Double Spin-On filter head

Material

Aluminium

Port Connections

SAE flange

Flow Rate

- 454 I/min / 120 US GPM for Return-Line application
- 132 I/min / 35 US GPM for Suction-Line application

Operating Pressure

- Max. 12 bar / 174 PSI
- Max. 5 bar / 72.5 PSI differential pressure (for any application without bypass valve)

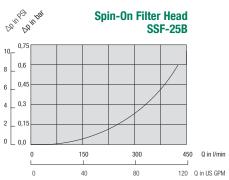
Temperature Range

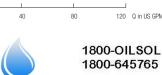
■ -30 °C ... +100 °C / -22 °F ... +212 °F

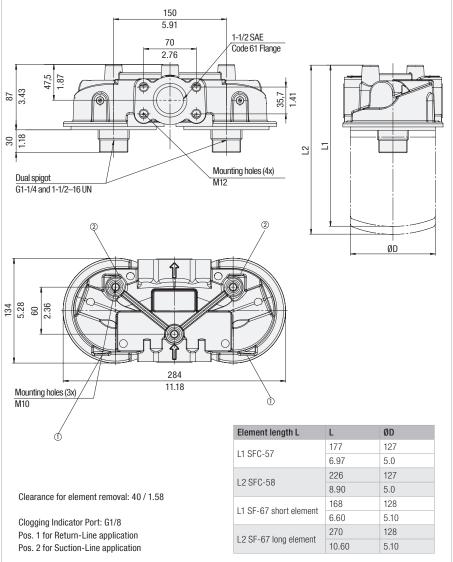
Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

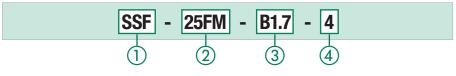


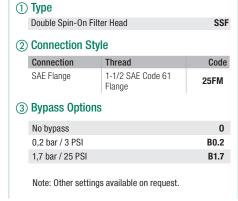

■ For use with SF-67 and SFC-57/58 series elements For element types with seal contour type A and B For element types and flow characteristics see page 176 for SF-67 and page 174 for SFC-57/58 The element is not part of the scope of delivery


Bypass valve (integrated in the head): Optional

Clogging Indicators

• For clogging indicator types see page 177





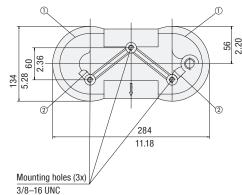
Dimensions in mm / in

Order Code

4 Clogging Indicator Port Options

All clogging indicator ports drilled

Note: Standard clogging indicator port is G1/8.



Dimensions

150 5.91 84 32 **Dual** spigot Mounting holes (4x) G1-1/4 and 1/2-13 UNC 7 1-1/2-16 UN ØD ØD

Clearance for element removal: 40 / 1.58 Clogging Indicator Port: 1/8 NPT Pos. 1 for Return-Line application

Pos. 2 for Suction-Line application

Element length L	L	ØD
11 SFC-57	177	127
LI 3FG-37	6.97	5.0
L 2 SFC-58	226	127
LZ 3FU-30	8.90	5.0
L1 SF-67 short element	168	128
	6.60	5.10
1.0.0F 07.1	270	128
L2 SF-67 long element	10.60	5.10

Double Spin-On Filter Heads • SSF-25

Technical Data

Construction

■ In-line Double Spin-On filter head

Material

Aluminium

Port Connections

- NPT
- SAE flange

Flow Rate

- 454 I/min / 120 US GPM for Return-Line application
- 132 I/min / 35 US GPM for Suction-Line application

Operating Pressure

- Max. 12 bar / 174 PSI
- Max. 5 bar / 72.5 PSI differential pressure (for any application without bypass valve)

Temperature Range

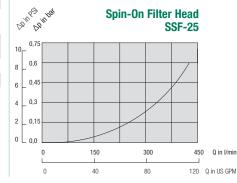
■ -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

Filter Elements


• For use with SF-67 and SFC-57/58 series elements For element types with seal contour type A and B For element types and flow characteristics see page 176 for SF-67 and page 174 for SFC-57/58 The element is not part of the scope of delivery

Valve

Bypass valve (integrated in the head): Optional

Clogging Indicators

• For clogging indicator types see page 177

Order Code

1) Type

Double Spin-On Filter Head

(2) Connection Style

C	Connection	Thread	Code
	NPT and SAE Flange	1-1/2 and 2 SAE Code 61 Flange	25

(3) Bypass Options

No bypass	0
0,2 bar / 3 PSI	B0.2
0,35 bar / 5 PSI	B0.35
1 bar / 15 PSI	B1.0
1,7 bar / 25 PSI	B1.7

4 Clogging Indicator Port Options

No clogging indicator port	0
Clogging indicator port drilled for Return-Line application	1
Clogging indicator port drilled for Suction-Line application	2
All clogging indicator ports drilled	4
Special	9

Note: Standard clogging indicator port is 1/8 NPT.

www.stauff.com/9/en/#163

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Tank Top Spin-On Filter Heads • SSFT-12B

Technical Data

Construction

■ Tank Top Spin-On filter head

Material

Aluminium

Port Connections

BSP

Flow Rate

■ 75 I/min / 20 US GPM

Operating Pressure

■ Max. 7 bar / 100 PSI

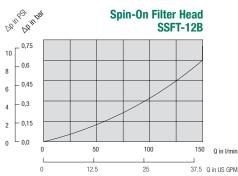
Temperature Range

 \blacksquare -30 °C ... +100 °C / -22 °F ... +212 °F

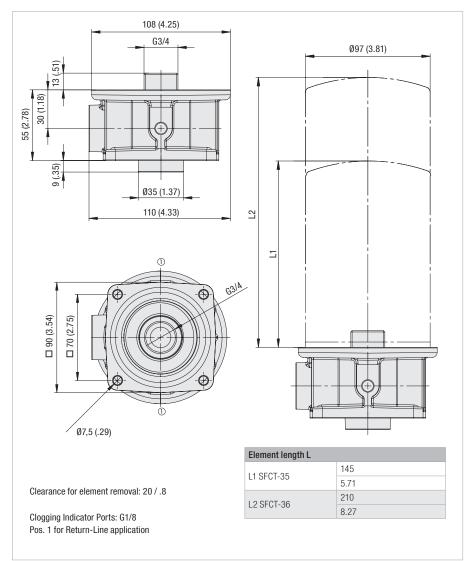
Media Compatibility

• Mineral oils, other fluids on request

Options and Accessories

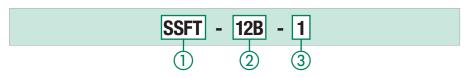

Filter Elements

• For use with SFCT-35/36 series elements For element types with seal contour type A and B For element types and flow characteristics see 174 The element is not part of the scope of delivery


Bypass valve 1,7 bar / 25 PSI integrated in the filter element

Clogging Indicators

• For clogging indicator types see page 177


Dimensions

Dimensions in mm / in

Order Code

① Type

③ Clogging Indicator Port Options

Line application	1
Special	9
Note: Chandend alonging indicator and in C1/0	

Note: Standard clogging indicator port is G1/8.

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Dimensions

Ø76 Ø97 2.99 3.81 14 50 163 35 2.36 7 Ξ ҈҉₩ \oplus 3.54 02 🗆 2.76 1.97 50

Clearance for element removal: 20 / .8

 \oplus

Clogging Indicator Port: 1/8 NPT Pos. 1 for Return-Line application

Element length L	
14 0507 05	145
L1 SFCT-35	5.70
L2 SECT-36	210
L2 3FU1-30	8.27

Dimensions in mm / in

Tank Top Spin-On Filter Heads • SSFT-12

Technical Data

Construction

Tank Top Spin-On filter head

Material

Aluminium

Port Connections

NPT

Flow Rate

■ 75 I/min / 20 US GPM

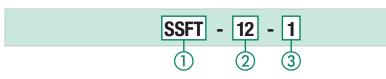
Operating Pressure

Max. 7 bar / 100 PSI

Temperature Range

 \bullet -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility


• Mineral oils, other fluids on request

Options and Accessories

Order Code

① Type

SSFT

 \oplus

Spin-On Filter Head 2 Connection Style

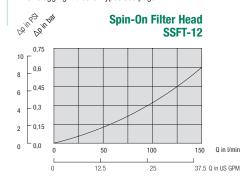
_			
	Connection	Thread	Code
	NPT	3/4	12

③ Clogging Indicator Port Options

No clogging indicator port	0
Clogging indicator port drilled for Return- Line application	1
Special	9

Note: Standard clogging indicator port is 1/8 NPT.

Filter Elements


For use with SFCT-35/36 series elements
 For element types with seal contour type A and B
 For element types and flow characteristics see page 174
 The element is not part of the scope of delivery

Valve

 Bypass valve 1,7 bar / 25 PSI integrated in the filter element

Clogging Indicators

For clogging indicator types see page 177

ESTAUFF ®

Tank Top Spin-On Filter Heads • SSFT-20B

Jii i iilei i ieaus - 33i i-20D

Technical Data

Construction

Tank Top Spin-On filter head

Material

Aluminium

Port Connections

BSP

Flow Rate

■ 200 I/min / 53 US GPM

Operating Pressure

Max. 7 bar / 100 PSI

Temperature Range

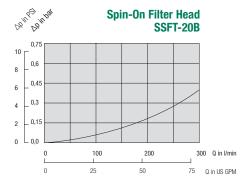
■ -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

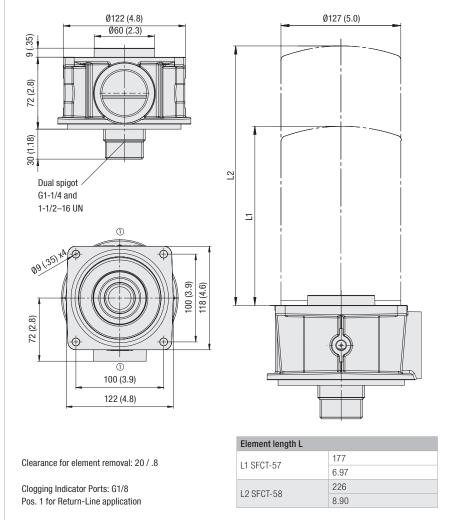
Mineral oils, other fluids on request

Options and Accessories

Filter Elements

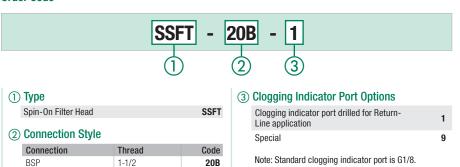

For use with SFCT-57/58 series elements
 For element types with seal contour type A
 For element types and flow characteristics see page 174
 The element is not part of the scope of delivery

Valve


 Bypass valve 1,7 bar / 25 PSI integrated in the filter element

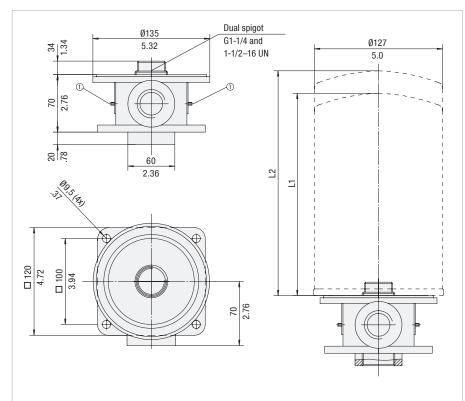
Clogging Indicators

• For clogging indicator types see page 177



Dimensions

Dimensions in mm / in


Order Code

Tank Top Spin-On Filter Heads • SSFT-20

Dimensions

Clearance for element removal: 20 / .8

Clogging Indicator Ports: 1/8 NPT Pos. 1 for Return-Line application

Element length L	
L1 CECT E7	177
L1 SFCT-57	6.97
1.2 SECT-58	226
L2 5FU1-00	8.90

Dimensions in mm / in

Order Code

1) Type

Spin-On Filter Head SSFT

2 Connection Style

Connection	Thread	Code
NPT	1-1/2	20

③ Clogging Indicator Port Options

No clogging indicator port	0
Clogging indicator port drilled for Return- Line application	1
Special	9

Note: Standard clogging indicator port is 1/8 NPT.

Construction

■ Tank Top Spin-On filter head

Material

Aluminium

Port Connections

Flow Rate

■ 200 I/min / 53 US GPM

Operating Pressure

Max. 7 bar / 100 PSI

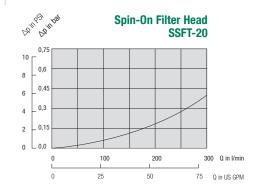
Temperature Range

■ -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

Mineral oils, other fluids on request

Options and Accessories


Filter Elements

■ For use with SFCT-57/58 series elements For element types with seal contour type A For element types and flow characteristics see page 174 The element is not part of the scope of delivery

Bypass valve 1,7 bar / 25 PSI integrated in the filter element

Clogging Indicators

For clogging indicator types see page 177

Spin-On Filter Elements

Description

STAUFF offers a wide range of Spin-On filter heads and Spin-On filter elements.

Sealing Material

■ NBR (Buna-N®)

Media Compatibility

• Mineral oils, other fluids on request

Temperature Range

■ -30 °C ... +100 °C / -22 °F ... +212 °F

Types SFC-35/36, SFCT-35/36

• Use with Spin-On filter heads SSF-12, SSFT-12 and SSFT-12B

■ Connection thread: G3/4

• Operating pressure: SFC: max. 12 bar / 174 PSI

SFCT: max 7 bar / 100 PSI

Differential Pressure: SFC: max. 4 bar / 58 PSI SFCT: max. 3 bar / 43,5 PSI

Burst Pressure: SFC: min. 25 bar / 363 PSI

SFCT: min 21 bar / 305 PSI

Type SF-63

■ Use with Spin-On filter head SLF

■ Connection thread: 3/4-16 UNF

• Operating pressure: max. 14 bar / 200 PSI • Differential Pressure: max. 5,5 bar / 80 PSI

min. 20 bar / 290 PSI

Burst Pressure:

Type SF-67

• Use with Spin-On filter heads SSF-20L/100/120/120L/130/150/160/180 SSF-24B/24N/24S/25B/25FM/25

■ Connection thread: 1/2–16 UN

• Operating pressure: max. 14 bar / 200 PSI Differential Pressure: max. 5,5 bar / 80 PSI Burst Pressure: min. 20 bar / 290 PSI

· Wire Mesh, Brass Mesh, Filter Paper, Inorganic Glass Fibre, Stainless Wire Mesh and Water Absorbing Filter Material

Options and Accessories

Valves

• Filter elements type SFCT have an internal bypass and anti-drain back diaphragm

Types SFC-57/58, SFCT-57/58

• Use with Spin-On filter heads SSF-20L/100/120/120L/130/160 SSF-24B/24N/24S/25B/25FM/25 and SSFT-20B/20

Connection thread: G1-1/4

• Operating pressure: SFC: max. 12 bar / 174 PSI

SFCT: max 7 bar / 100 PSI

Differential Pressure: SFC: max. 4 bar / 58 PSI SFCT: max. 3 bar / 43,5 PSI

SFC: min. 25 bar / 363 PSI

SFCT: min 21 bar / 305 PSI

Type SF-65

Use with Spin-On filter head SAF

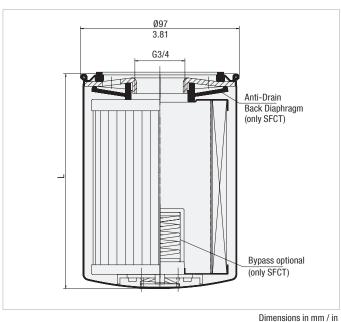
■ Connection thread: 1-12 UNF

• Operating pressure: max. 14 bar / 200 PSI Differential Pressure: max. 5,5 bar / 80 PSI

Burst Pressure: min. 20 bar / 290 PSI

Private Labelling

• On request, the filter elements can be printed with a private label



1800-OILSOL

https://oilsolutions.com.au/

Spin-On Filter Elements • Type SFC-35 / 36 and SFCT-35 / 36

Product Description

STAUFF SFC-35/36 series Spin-On Elements are used with the STAUFF SSF-12 Spin-On Filters with G3/4 threaded ports.

STAUFF SFCT-35/36 series Spin-On Elements have an internal 1,7 bar / 25 PSI bypass and anti-drain back diaphragm for use with STAUFF SSFT-12 and SSFT-12B Tank Top Spin-On Filters.

Technical Data

Connection Thread

■ G3/4

Seal Contour

■ Type A (see page 151)

Sealing Material

■ NBR (Buna-N®)

Operating Pressure

Max. 12 bar / 174 PSI

Differential Pressure

 Paper: Max. 5 bar / 72.5 PSI
 Glass Fibre / Wire Mesh: Max. 10 bar / 145 PSI
 (for any application without bypass valve)

Burst Pressure

Min. 20 bar / 290 PSI

Bypass Pressure

■ 1,7 bar / 25 PSI (only SFCT-series)

Temperature Range

■ -30 °C ...+100 °C / -22 °F ... +212 °F

Media Compatibility

• Mineral oils, other fluids on request

Dimensions

Order Code	Filter Paper II				Inorganic Glass Fibre					
Element without bypass valve	SFC-3510-E	SFC-3610-E	SFC-3525-E	SFC-3625-E	SFC-3503-AE	SFC-3603-AE	SFC-3510-AE	SFC-3610-AE	SFC-3525-AE	SFC-3625-AE
Element with bypass valve	SFCT-3510-E	SFCT-3610-E	SFCT-3525-E	SFCT-3625-E			SFCT-3510-AE	SFCT-3610-AE	SFCT-3525-AE	SFCT-3625-AE
	10µт	10µт	25µт	25µт	Зµт	Зµт	10µт	10µт	25µт	25µт
Length L (mm/in)	145	210	145	210	145	210	145	210	145	210
Lengur L (IIIII/III)	5.7	8.27	5.7	8.27	5.7	8.27	5.7	8.27	5.7	8.27
ß-Ratio	B ₁₀ ≥ 2	$\beta_{10} \ge 2$	$\beta_{25} \ge 2$	$\beta_{25} \ge 2$	B ₃ ≥ 200	β ₃ ≥ 200	$\beta_{10} \geq 200$	$\beta_{10} \ge 200$	$\beta_{25} \ge 200$	$\beta_{25} \geq 200$
Carton Quantity	1	1	1	1	1	1	1	1	1	1
Carton Weight (kg/lbs)	0,9	1,3	0,9	1,3	0,9	1,3	0,9	1,3	0,9	1,3
Garton Weight (Kg/IDS)	2	2.6	2	2.6	2	2.6	2	2.6	2	2.6

Order Code	Wire Mesh		Brass Mesh		
Element without bypass valve	SFC-3560-E	SFC-3660-E	SFC-35125-E	SFC-36125-E	
Element with bypass valve	-	-	-	-	
	60µт	60µm	125µт	125µm	
Length L (mm/in)	145	210	145	210	
Length E (min/m)	5.7	8.27	5.7	8.27	
B-Ratio	n/a	n/a	n/a	n/a	
Carton Quantity	1	1	1	1	
Corton Woight (kg/lbs)	0,9	1,3	0,9	1,3	
Carton Weight (kg/lbs)	2	2.6	2	2.6	

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Spin-On Elements • Type SFC-57 / 58 and SFCT-57 / 58

Product Description

STAUFF Spin-On Filter Elements of the SFC-/SFCT-57/58 series are used with the STAUFF SSF-20L/100/120L/130/160 and SSF-24B/24N/24S/25B/25FM/25 series Spin-On Filters with G1-1/4 threaded ports.

STAUFF SFCT-57/58 series Spin-On Elements have an internal 1,7 bar / 25 PSI bypass and anti-drain back diaphragm for use with STAUFF SSFT-20B/20 Tank Top Spin-On Filters.

Ø127 5.0 G1-1/4 Anti-Drain Back Diaphragm (only SFCT) Bypass optional (only SFCT)

Dimensions in mm / in

Technical Data

Connection Thread

■ G1-1/4

Seal Contour Type A (see page 151)

Sealing Material

■ NBR (Buna-N®)

Operating Pressure

Max. 12 bar / 174 PSI

Differential Pressure

■ Paper: Max. 5 bar / 72.5 PSI Glass Fibre / Wire Mesh: Max. 10 bar / 145 PSI (for any application without bypass valve)

Burst Pressure

Min. 17 bar / 247 PSI

Bypass Pressure

■ 1,7 bar / 25 PSI (only SFCT-series)

Temperature Range

■ -30 °C ...+100 °C / -22 °F ... +212 °F

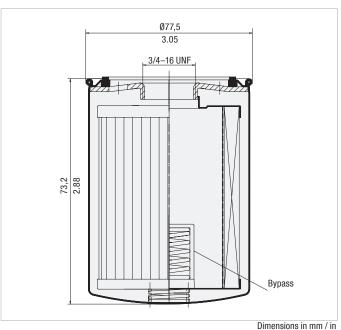
Media Compatibility

• Mineral oils, other fluids on request

Dimensions

Order Code	Filter Paper In				Inorganic Glass Fibre					
Element without bypass valve	SFC-5710-E	SFC-5810-E	SFC-5725-E	SFC-5825-E	SFC-5703-AE	SFC-5803-AE	SFC-5710-AE	SFC-5810-AE	SFC-5725-AE	SFC-5825-AE
Element with bypass valve	SFCT-5710-E	SFCT-5810-E	SFCT-5725-E	SFCT-5825-E	-	-	SFCT-5710-AE	SFCT-5810-AE	SFCT-5725-AE	SFCT-5825-AE
	10µт	10µm	25µт	25µт	Зµт	3µт	10µт	10µт	25µm	25µт
Length L (mm/in)	177 6.97	226 8.9	177 6.97	226 8.9	177 6.97	226 8.9	177 6.97	226 8.9	177 6.97	226 8.9
B-Ratio	β ₁₀ ≥ 2	β ₁₀ ≥ 2	β ₂₅ ≥ 2	β ₂₅ ≥ 2	B ₃ ≥ 200	β ₃ ≥ 200	β ₁₀ ≥ 200	β ₁₀ ≥ 200	B ₂₅ ≥ 200	β ₂₅ ≥ 200
Carton Quantity	1	1	1	1	1	1	1	1	1	1
Carton Weight (kg/lbs)	1,4	1,85	1,4	1,85	1,4	1,85	1,4	1,85	1,4	1,85
3 (0)	3	4	3	4	3	4	3	4	3	4

Order Code	Wire Mesh		Brass Mesh		
Element without bypass valve	SFC-5760-E	SFC-5860-E	SFC-57125-E	SFC-58125-E	
Element with bypass valve	-	-	-	-	
	60µт	60µт	125µт	125µт	
Length L (mm/in)	177	226	177	226	
Length E (min/m)	6.97	8.9	6.97	8.9	
B-Ratio	n/a	n/a	n/a	n/a	
Carton Quantity	1	1	1	1	
Corton Woight (kg/lbs)	0,9	1,3	0,9	1,3	
Carton Weight (kg/lbs)	2	2.6	2	2.6	


1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Spin-On Elements • Type SF-63

Product Description

STAUFF SF-63-series Spin-On Elements are used with the STAUFF SLF Spin-On Filters.

Technical Data

Connection Thread

■ 3/4-16 UNF

Seal Contour

■ Type A (see page 151)

Sealing Material

■ NBR (Buna-N®)

Operating Pressure

■ Max. 14 bar / 200 PSI

Differential Pressure

■ Max. 5,5 bar / 80 PSI (for any application without bypass valve)

Burst Pressure

Min. 20 bar / 290 PSI

Bypass Pressure

- SF-6310-18 1,24 bar / 18 PSI
- SF-6325-10 0,70 bar / 10 PSI

Temperature Range

 \blacksquare -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

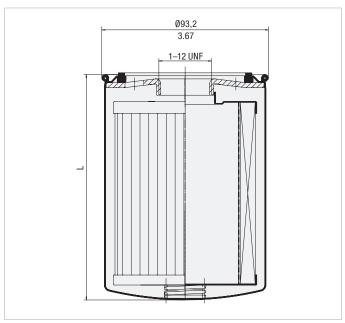
• Mineral oils, other fluids on request

Dimensions

	Filter Paper	
Order Code	SF-6310-18	SF-6325-10
	10µт	25µт
B-Ratio	B ₁₀ ≥ 2	$\beta_{25} \ge 2$
Dirt Holding Capacity (g)	6	6
Carton Quantity	12	12
Carton Weight (kg/lbs)	3,6	3,6
Garton Weight (Kg/IDS)	8	8

www.stauff.com/9/en/#171

1800-OILSOL


https://oilsolutions.com.au/

Spin-On Elements • Type SF-65

Product Description

STAUFF SF-65-series Spin-On Elements are used with the STAUFF SAF series Spin-On Filters.

Dimensions in mm / in

Technical Data

Connection Thread

■ 1–12 UNF

Seal Contour

Type A (see page 151)

Sealing Material

■ NBR (Buna-N®)

Operating Pressure

- Max. 14 bar / 200 PSI
- SF-6520-W: Max. 7 bar / 101.5 PSI

Differential Pressure

■ Max. 5,5 bar / 80 PSI (for any application without bypass valve)

Burst Pressure

Min. 20 bar / 290 PSI

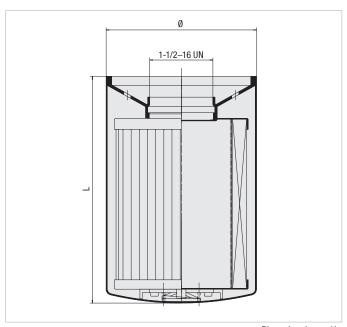
Temperature Range■ -30 °C ... +100 °C / -22 °F ... +212 °F

Media Compatibility

• Mineral oils, other fluids on request

Dimensions

	Filter Paper				Inorganic Glass Fi	Water Absorbing		
Order Code	SF-6520	SF-6521	SF-6510	SF-6511	SF-6549	SF-6505	SF-6504	SF-6520-W
	10µт	10µт	25µт	25µт	3µт	12µт	25µт	10µm water absorb
Length L (mm/in)	147	204	147	204	147	147	147	133
Lengur L (IIIII/III)	5.76	8.00	5.76	8.00	5.76	5.76	5.76	5.25
ß-Ratio	B ₁₀ ≥ 2	B ₁₀ ≥ 2	β ₂₅ ≥ 2	$\beta_{25} \ge 2$	B ₃ ≥ 200	$B_{12} \ge 200$	B ₂₅ ≥ 200	B ₁₀ ≥ 2
Dirt Holding Capacity ACFTD (g)	14.4	22	20.4	31.2	19	11	26	Water holding capacity 162 ml 5.5 oz
Carton Quantity	12	12	12	12	12	12	12	12
Carton Weight (kg/lbs)	6,3	8,4	6,4	8,8	8,6	8,6	8,6	8,6
Carton Weight (kg/lbs)	13.9	18.5	14.2	19.4	19	19	19	19


1800-OILSOL

https://oilsolutions.com.au/

Spin-On Elements - Type SF-67

Dimensions in mm / in

SF-6721 SF-6721 It incomponent ment is 12 The state of t

Product Description

STAUFF SF-67-series Spin-0n Elements are used with the STAUFF SSF-20L/100/120L/130/150/160/180 and SSF-24B/24N/24S/25B/25FM/25 Spin-0n Filters.

Technical Data

Connection Thread

■ 1-1/2-16 UN

Seal Contour

■ Type B (see page 151)

Sealing Material

■ NBR (Buna-N®)

Operating Pressure

- Max. 14 bar / 200 PSI
- SF-6721-W: Max. 7 bar / 101.5 PSI

Differential Pressure

Max. 5,5 bar / 80 PSI (for any application without bypass valve)

Burst Pressure

■ Min. 20 bar / 290 PSI

Temperature Range

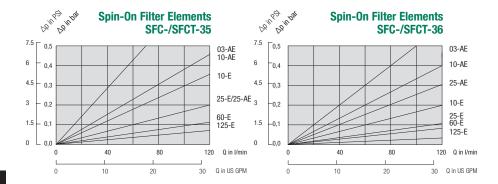
 \blacksquare -30 °C ... +100 °C / -22 °F ... +212 °F

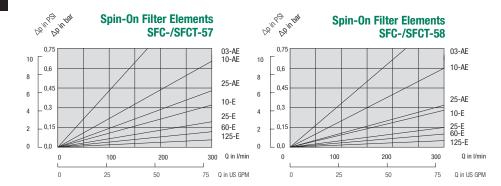
Media Compatibility

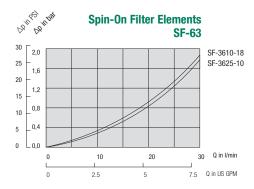
• Mineral oils, other fluids on request

Dimensions

	Inorganic Glass	Fibre							
Order Code	SF-6702-MG	SF-6703-MG	SF-6704-MG	SF-6706-MG	SF-6707-MG	SF-6730-MG	SF-6731-MG	SF-6728-MG	SF-6726-MG
	1µт	Зµт	Зµт	6µт	6µт	12µm	12µm	25µт	25µт
Longth L (mm/in)	270	168	270	168	270	168	270	168	270
Length L (mm/in)	10.6	6.6	10.6	6.6	10.6	6.6	10.6	6.6	10.6
Diameter (1 (mm/in)	129	129	129	129	129	129	129	129	129
Diameter Ø (mm/in)	5.08	5.08	5.08	5.08	5.08	5.08	5.08	5.08	5.08
B-Ratio	β ₁ ≥ 200	B ₃ ≥ 200	B ₃ ≥ 200	B ₆ ≥ 200	β ₆ ≥ 200	B ₁₂ ≥ 200	B ₁₂ ≥ 200	B ₂₅ ≥ 200	B ₂₅ ≥ 200
Dirt Holding Capacity ACFTD (g)	30	31	47	35	54	38	59	50	76
Carton Quantity	6	6	6	6	6	6	6	6	6
Carton Waight (kg/lba)	11,8	8,2	11,8	8,2	11,8	8,2	11,8	8,2	11,8
Carton Weight (kg/lbs)	26.1	18	26.1	18	26.1	18	26.1	18	26.1

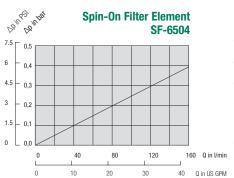

	Filter Paper			Stainless Wire Mesl	1	Water Absorbing	
Order Code	SF-6720	SF-6721	SF-6710	SF-6711	SF-6790	SF-6791	SF-6721-W
	10µm	10µm	25µm	25µm	144µm	144µm	10µm water absorb
Longth L (mm/in)	168	270	168	270	168	270	270
Length L (mm/in)	6.6	10.6	6.6	10.6	6.6	10.6	10.6
Diameter () (man lin)	128,5	128,5	128,5	128,5	128,5	128,5	128,5
Diameter Ø (mm/in)	5.06	5.06	5.06	5.06	5.06	5.06	5.06
B-Ratio	B ₁₀ ≥ 2	B ₁₀ ≥ 2	B ₂₅ ≥ 2	$\beta_{25} \ge 2$	n/a	n/a	B ₁₀ ≥ 2
Dirt Holding Capacity ACFTD (g)	34	62	34	62	n/a	n/a	Water holding capacit 444 ml / 15 oz
Carton Quantity	6	6	6	6	6	6	6
Corton Woight (Ica/Iba)	6,6	7,9	6,7	9,3	8,2	11,8	11,8
Carton Weight (kg/lbs)	14.6	17.5	14.9	20.6	18	26.1	26.1

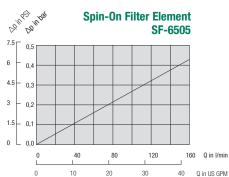


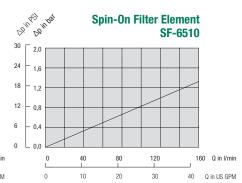


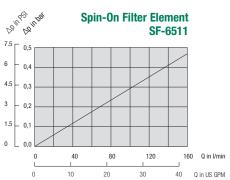
Spin-On Elements • Type SFC/SFCT-35/36, SFC/SFCT-57/58 and SF-63

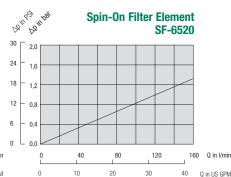
The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. SFC-35/36 series Spin-On Elements are used with STAUFF SSF-12 Spin-On Filters, SFCT-35/36 series Spin-On Elements are used with STAUFF SSF-12 Spin-On Filters, SFCT-57/58 series Spin-On Elements are used with STAUFF SSF-20/24/25/100/120/130/160 Spin-On Filters, SFCT-57/58 series Spin-On Elements are used with STAUFF SSF-20/24/25/100/120/130/04 Spin-On Filters.

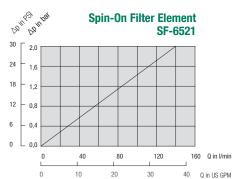

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

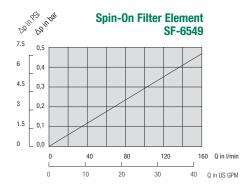


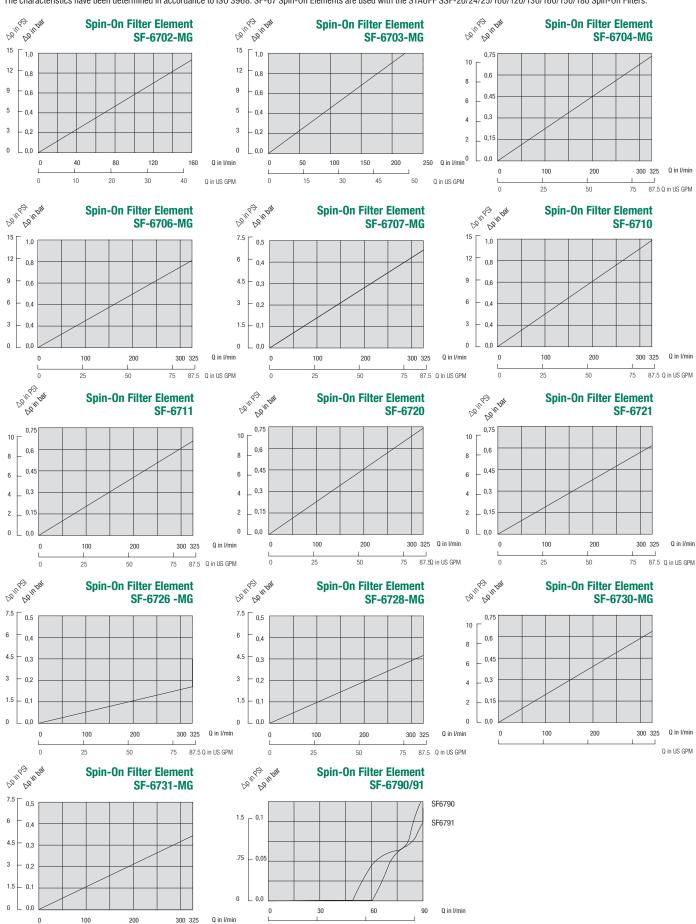



Spin-On Elements - Type SF-65


The following characteristics are valid for mineral oils with a density of 0,85 kg/dm³ and the kinematic viscosity of 30 mm²/s (30 cSt). The characteristics have been determined in accordance to ISO 3968. SF-65 Spin-On Elements are used with the STAUFF SAF-05/06/07/10/11/13 Spin-On Filters.






1800-OILSOL 1800-645765 https://oilsolutions.com.au/

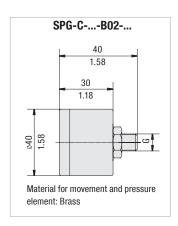
Spin-On Elements - Type SF-67

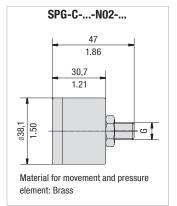
The following characteristics are valid for mineral oils with a density of 0,85 kg/dm3 and the kinematic viscosity of 30 mm2/s (30 cSt).

The characteristics have been determined in accordance to ISO 3968. SF-67 Spin-On Elements are used with the STAUFF SSF-20/24/25/100/120/130/160/150/180 Spin-On Filters.

87.5 Q in US GPM

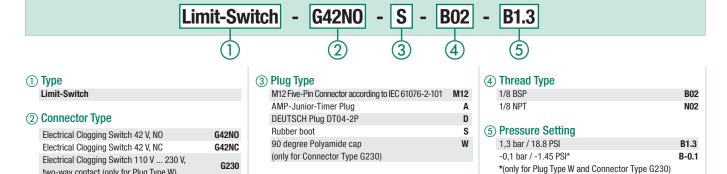
7.5


Q in US GPM


22.5

Clogging Indicators

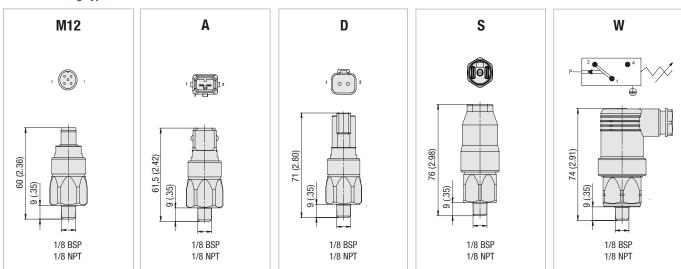
Visual Indicators



SPG-C-...-B02-

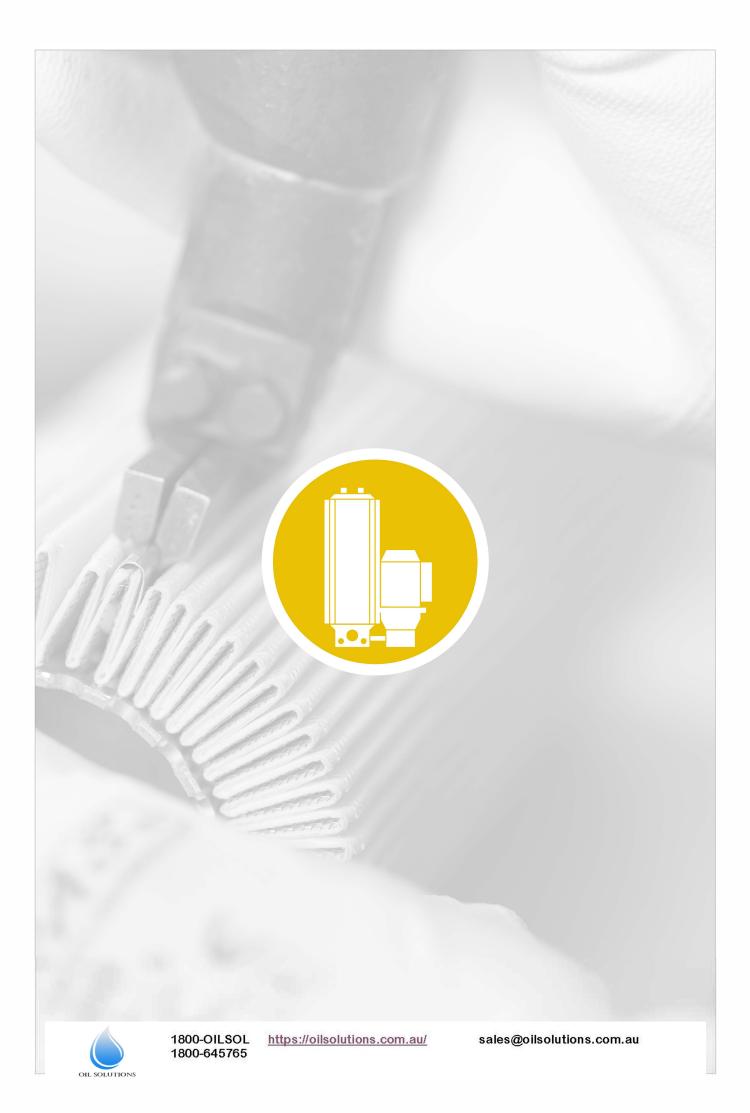
SPG-C-...-N02-... Visual Pressure Clogging Indicators (for Spin-On Filter in Return-Line applications) **Coloured Segments Order Code** Unit of scale Range of scale Connection G Red 0 ... 2,5 1,5 ... 2,5 SPG-C-040-00002.5-02-P-B02-402923 1/8 1,2 ... 1,5 bar 0...1.2 0 ... 2,5 **BSP** 1/8 0 ... 4 2,5 ... 3 3 ... 4 SPG-C-040-00004-02-P-B02-402922 bar 1/8 without coloured segments SPG-C-040-00012-02-P-B02 bai 0 ... 12 15 ... 100 SPG-C-040-00100-03-P-N02-402927 1/8 PSI 0 ... 100 0 ... 13 13 ... 15 NPT 1/8 PSI 0 ... 100 0 ... 21 25 ... 100 SPG-C-040-00100-03-P-N02-402928 21 ... 25 Visual Vacuum Clogging Indicators (for Spin-On Filter in Suction-Line applications Order Code -76 ... -18 SPG-C-040-(-76)-00000-22-P-B02-402924 BSP 1/8 cm Hg -76 ... 0 -13 ... 0 -18 ... -13 -4 ... 0 -30 ... -6 1/8 -30 ... 0 SPG-C-040-(-30)-00000-23-P-N02-402925 in Hg -6 ... -4 NPT -30 ... -11 SPG-C-040-(-30)-00000-23-P-N02-402926 1/8 -30 ... 0 -9 ... 0 -11 ... -9 in Hg

Electrical Clogging Switch


Order Code

Note: Technical Data for Limit-Switch types please see Page 73.

two-way contact (only for Plug Type W)


Dimensions Plug Type

Note: The customer / user carries the responsibility for the electrical connection.

Dimensional drawings: All dimensions in mm/in.

				.00					
	Overview Offline and Bypass Filters		180		Bypass Filters	BPS	199 - 202		
	STAUFF System	181		Overview		199			
	Offline and Bypass Filters Replacement E	lements	182		Technical Data / Dimensions		200 - 201		
	Offline Filters	OLS	183 - 188		Order Code - Bypass Filter		201		
	Overview		183		Order Code - Filter Elements		201		
	Technical Data / Dimensions		184 - 187		Hydraulic Symbols / Flow Characteristics for OLS / BPS				
	Order Code - Offline Filter		188		Mini Water Vac	SMWV	204 - 205		
	Order Code - Filter Elements		188		Overview		204		
	Water Absorbing Offline Filters	OLSW	189 - 194		Technical Data / Dimensions		204 -205		
	Overview		189		Order Code - Offline Filter		205		
	Technical Data / Dimensions		190 - 193						
	Order Code - Water Absorbing Offline Filter		194						
	Order Code - Filter Elements Order Code - Pre-Filter Elements		194						
	Heated Offline Filters	OLSH	195 - 198						
	Overview Technical Data / Dimensions Order Code - Offline Filter		195						
			196 - 197						
			198						
	Order Code - Filter Elements		198						

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Product Description

STAUFF Offline and Bypass Filter Systems are designed to keep hydraulic and lubrication systems free of particles and water contamination. STAUFF OLS and BPS Units utilize the STAUFF Systems concept for the removal of contamination from hydraulic and lubrication systems. Desiccant Air Breathers, which clean and dry the air entering the reservoir, are also part of this contamination removal system.

STAUFF Systems will provide optimal system cleanliness for today's sophisticated hydraulic and lubrication systems.

- Increased flow capacity and dirt-hold capacity
- Prevention of channel forming by radial filtration direction
- Extremely clean oil due to the high filtration efficiency $\beta_{0.5} \ge 200$, $\beta_2 \ge 2330$
- Compact and easy-maintenance design
- . Longer usage life for oil and components

Material

Housing: Anodized Aluminium, available with one, two or four filter housings

in two different length

Housing Pressure

Max. 20 bar / 290 PSI

System Volume

■ Max. 10800 I / 2853 US GAL

Connections

• G3/8, G1/2 and G3/4, Fitting with 18L connection

Differential Pressure

Max. 6.2 bar / 90 PSI

Temperature

■ Max. +80 °C / +176 °F media temperature

Media Compatibility

• Mineral and lubrication oils, others on request

Options and Accessories

Clogging Indicators

Visual Clogging Indicators

Type OLS

- · Offline Filter System with intergrated motor/pump unit
- Availab Special designed for industrial applications

Type BPS

- Bypass filter units are especially designed for mobile
- Applications in hydraulic and/or transmission systems
- No special motor-pump unit is required

Type OLSW

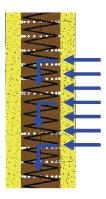
 Water absorbing filter elements with large water holding capacity

Type SMWV

- Designated oil purification unit, it dehydrates and cleans most types of oils such as lubricating, hydraulic, transformer and switch oils
- Efficient water, gas and particle removal
- System volume: max. 3.000 l / 795 gal
 Recirculating flow rate: 90 l/h / 23.8 gal/hr
 Backpressure: max. 1 bar / 14.5 PSI
- Extension of fluid life
- Reduces fluid disposal
- Minimizes corrosion
- Reduced failures and downtime
- · Reduce operating costs

Type OLSH

- Pre-heating unit and extremely efficient filter elements
- Increased flow capacity


1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Filter Element SRM-30/-60

Filter Element Design

Air Conditioners SDB / SVDB

System Contamination

In today's hydraulic market it is an accepted fact that contamination causes 70 % of all mechanical failures. This contamination results from the presence of solid particles such as metal, sand and rubber.

Changes in temperature cause water vapour to condense, resulting in unwanted water in the oil, the presence of this water accelerates the deterioration of the oil.

Mainstream filters are incapable of removing particles, smaller than 2 micron (better known as silt). Fluctuations in pressure and flow result in changing conditions preventing these filters ${\sf res}$ from carrying out fine filtration; most of the silt remains in the system affecting the chemical composition of the oil.

All these problems lead to reduced oil life and increased component wear, maintenance costs and machine downtime.

Removing silt and preventing the formation of free water will combat these problems.

At the heart of the STAUFF Offline and Bypass Filter Unit is the unique microfilter element. This filter is designed with a radial flow path.

The element is constructed with 0,5 micron media and is therefore able to remove the smallest particles (silt) from the oil.

The filter material is composed primarily of cellulose, which is applied by a special wrapping method. Glass Fibre and water absorbing elements with 3-20 µm are available on request.

The cellulose material is capable of retaining solid particles and absorbing water. This helps to prevent chemical deterioration of the oil and the formation of various acids and sludge.

Hydraulic cylinder extension for example, can draw air, solid contamination particles and water vapour into the oil reservoir.

The water vapour condenses due to temperature changes and causes not only oxidation of the oil, but can also lead to serious mechanical wear in the system.

Air Conditioning

Standard air filters remove a certain amount of solid particle contamination from the air but allow water vapour, to pass through,

The STAUFF "Air conditioners" type SDB and SVDB ensure that incoming air is first dried and then filtered. The SDB and SVDB units should be used in conjunction with the OLS / BPS Systems in order to provide a more complete filtering system. See Catalogue No. 10 -Hydraulic Accessories for more details.

Advantages

- Less mailfunction
- · Protection of expensive main stream filters
- Less frequent oil changes
- Extended usable life of the oil
- · Less machine downtimes

Characteristics

- A filter fineness of 0,5 micron $\beta_{0.5} \ge 200$, $\beta_2 \ge 2330$
- Large particle collection capacity
- · High filtration capacity due to depth effect
- · Large water adsorption capacity
- Do not adversely affect viscosity or additives
- Do not remove additives
- Reduce the oxidation process
- Reduce the forming of acids
- With two measuring points for particle counter or oil sampling
- Save Cost

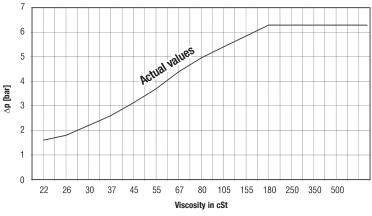
Applications

- Mining
- Harvesting Forestry
- Agricultural
- Off-road
- Fishing
- Road construction
- Cranes
- Airport equipment
- Flight simulators
- Pulp and paper
- Food processing

- Presses
- Automotive industry
- Timber plants
- Plastic and rubber Cement and concrete
- Metal industry
- Material handling
- Bridges/Hydraulic locks/Water works Petrochemical industry
- Power stations
- Marine
- Steel

1800-OILSOL 1800-645765

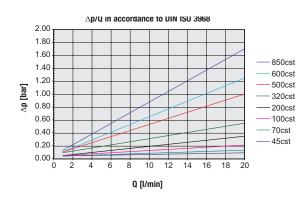
https://oilsolutions.com.au/

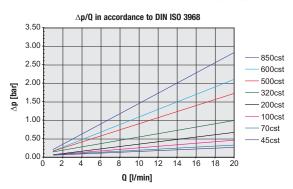

Offline and Bypass Filters Replacement Elements • Type SRM

Filter Element Technical Data

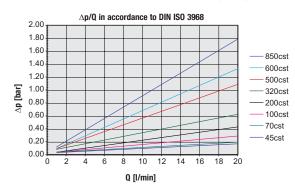
Element Model	SRM-30-H-B	SRM-60-H-B	SRM-30-E-01-B	SRM-60-E-01-B	SRM-30-E-03-B	SRM-60-E-03-B	SRM-30-EA	SRM-60-EA
Filter Material	Cellulose	Cellulose	Glass fibre	Glass fibre	Glass fibre	Glass fibre	Glass fibre and Polymer	Glass fibre and Polymer
Filtration Efficiency	B ₂ ≥ 2331	β ₂ ≥ 2331	B ₁ ≥ 200	B ₁ ≥ 200	$\beta_3 \ge 200$	B ₃ ≥ 200	B ₅ ≥ 200	B ₅ ≥ 200
Water Absorption Capacity	150 ml	300 ml	N/A	N/A	N/A	N/A	350 ml	700 ml
water Absorption Capacity	5 oz	10 oz	IWA	IV/A	IWA	IV/A	11.8 oz	23.6 oz
Nominal Flow per Element	2,1 l/min	4,2 I/min	2,1 l/min	4,2 l/min	2,1 I/min	4,2 I/min	2,1 I/min	4,2 I/min
Nominal Flow per Element	.6 GPM	1.2 GPM	.6 GPM	1.2 GPM	.6 GPM	1.2 GPM	.6 GPM	1.2 GPM
Max. Viscosity at Nominal Flow Rate	180 cSt	180 cSt	800 cSt	800 cSt	800 cSt	800 cSt	800 cSt	800 cSt
M- 011 T	+80 °C	+80 °C	+80 °C	+80 °C	+80 °C	+80 °C	+80 °C	+80 °C
Max. Oil Temperature	+176 °F	+176 °F	+176 °F	+176 °F	+176 °F	+176 °F	+176 °F	+176 °F
Laurent of Florida	300 mm	600 mm	300 mm	600 mm	300 mm	600 mm	300 mm	600 mm
Lenght of Element	11.8 in	23.6 in	11.8 in	23.6 in	11.8 in	23.6 in	11.8 in	23.6 in
Sealing Material (Standard)	NBR (Buna-N® Rubber	BR (Buna-N®) and Silicone NBR (Buna-N®)			NBR (Buna-N®)		NBR (Buna-N®)	
Other Sealing Material	Contact STAUFF							
Fluid Compatibility:								
Mineral Oils								
H, HI, HLP, HVLP	OK		OK		OK		OK	
Biodegradable Oils								
HEPG Polethyleneglycol	Contact STAUFF				-1			
HEES Synthetic ester	OK		OK		OK		OK	
HETG Vegetable seed oil	Contact STAUFF							
Fire Inhibiting Fluids								
HFA emulsions	NO		OK		OK		NO	
HFC glycol/water solution	NO		OK		OK		NO	
HFD fluids no water content	Contact STAUFF							
Annualizada Mainh	0,8 kg		1,25 kg		1,25 kg		1,25 kg	
Approximate Weight	1.8 lb		2.8 lb		2.8 lb		2.8 lb	

Filter Element SRM-30-H-B ∆p / viscosity - graph


(at a flow of 2,1 l/min / .6 US GPM per element)


1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Filter Element SRM-30-E-03-B ΔP / Viscosity-Graph



sales@oilsolutions.com.au

Filter Element SRM-30-E-01-B ΔP / Viscosity-Graph

Filter Element SRM-30-EA ΔP / Viscosity-Graph

Offline Filters • Type OLS

Product Description

STAUFF Offline Filter Units can be applied to every imaginable industrial application where hydraulic or lubrication systems are present.

An integrated motor/pump unit draws fluid out of the tank, filters it and pumps clean oil back into the system. Offline Filter Units can continue to work even if the main system is not in use. The standard range offers filter units for reservoirs with a capacity of up to 10800 I / 2853 gal.

Over the years, STAUFF Systems have developed considerable experience in the hydraulic and lubrication market cleaning systems to levels not previously possible with conventional methods.

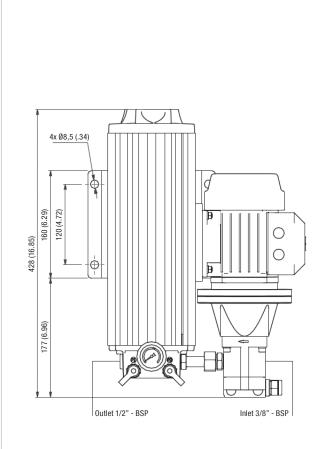
The OLS is available with one, two or four filter housings and in two different lengths. The maximum flow for the Offline Unit goes from 2,1 ... 17 I/min / .55 ... 4.5 US GPM at a viscosity between 20 ... 160 cSt. For the OLS you can choose several different motor/pump units, for more information please see page 188 (Order code).

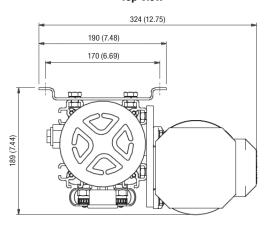
All Offline Filter Systems are available with air driven motors.

These units are ideal for areas where electric power is unavailable or for hazardous locations.

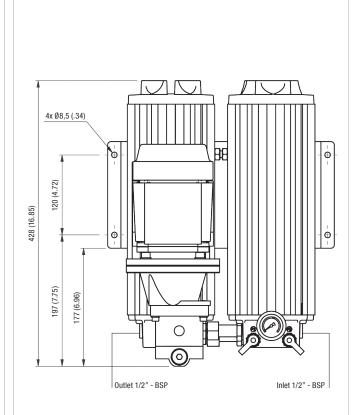
Single Length (see page 184 / 185)

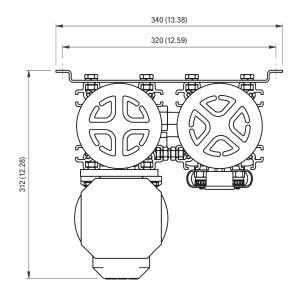
Double Length (see page 186 / 187)




1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Offline Filters • Type OLS


Dimensions OLS-1-30-H-B


Top View

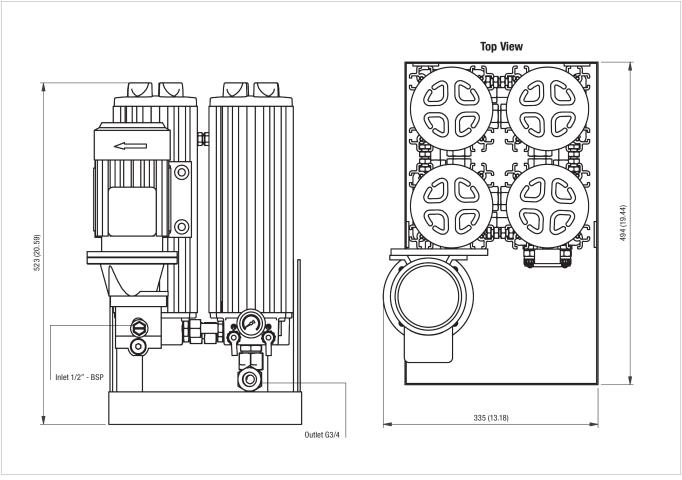
Dimensions OLS-2-30-H-B

Top View

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

sales@oilsolutions.com.au


All dimensions in $\mbox{mm\,/\,in}$

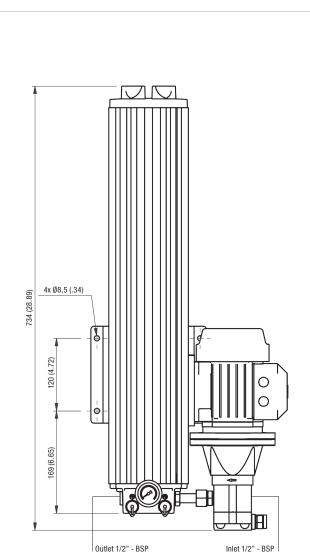
Offline Filters • Type OLS

Dimensions OLS-4-30-H-B

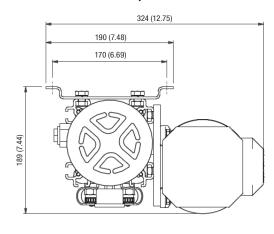
All dimensions in $\operatorname{mm}/\operatorname{in}$

Technical Data

	OLS-1-30-H-B	OLS-2-30-H-B	OLS-4-30-H-B
Number of Filter Housings	1	2	4
Nominal Flow	2,1 I/min	4,2 l/min	8,4 I/min
Noninal Flow	.55 US GPM	1.1 US GPM	2.22 US GPM
Max. Differential Pressure	6,2 bar		
wax. Differential Fressure	90 PSI		
Max. Fluid Temperature	+80 °C		
wax. Fluid Temperature	+176 ℉		
Max. Housing Pressure	20 bar		
Wax. Housing Freedure	290 PSI		
Viscosity Range	20 160 cSt 100 750 SUS		
Connection Suction Side	G3/8	G1/2	
Connection Return Side	G1/2		G3/4
Hose Diameter	1/2 in (inner diameter) flexible hose		3/4 in (inner diameter) flexible hose
Weight (Including Element)	14 kg	21 kg	39 kg
weight (including Liement)	30.9 lbs	46.3 lbs	86 lbs
Max. System Volume	1350	2700 l	5400 I
wax. Oystom volume	356 gal	713 gal	1426 gal
Dimensions	428 x 324 x 189 mm	428 x 340 x 312 mm	523 x 494 x 335 mm
HxWxD	16.85 x 12.75 x 7.44 in	16.85 x 13.38 x 12.28 in	20.59 x 19.44 x 13.18 in
Connection for Online Particle Counter	STAUFF Test (M16 x 2)		
Pump	Gear pump		
Motor	See page 188 for electric motor details		
Connection Oil-Analysis: P1 filter inlet side P2 filter outlet side	Test connector (M16 x 2) Red Test connector (M16 x 2) Yellow		

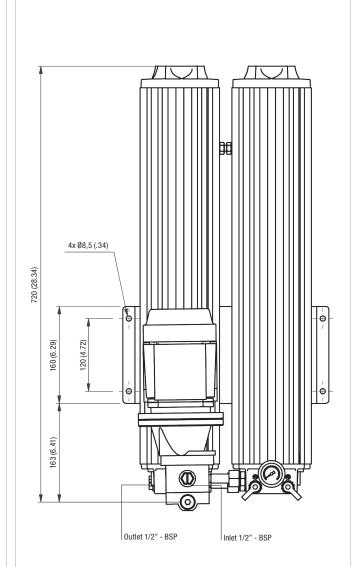


1800-OILSOL 1800-645765 https://oilsolutions.com.au/

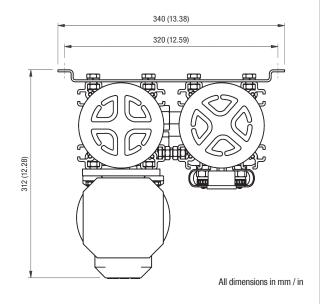

STAUFF

Offline Filters • Type OLS

Dimensions OLS-1-60-H-B



Top View

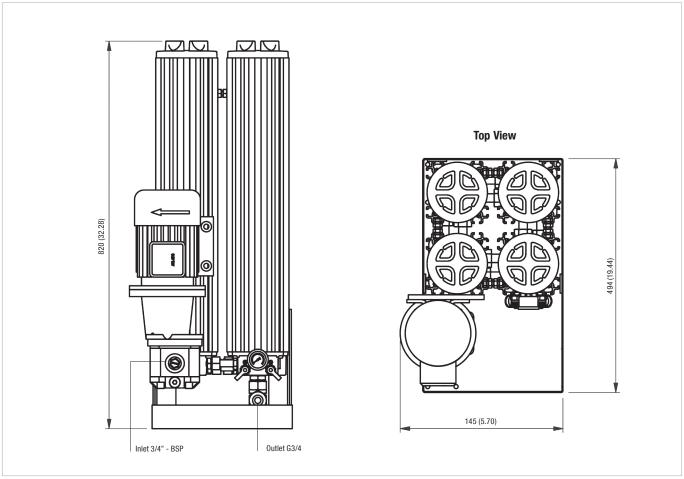


1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Dimensions OLS-2-60-H-B

Top View

sales@oilsolutions.com.au

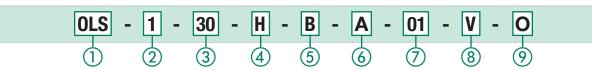

186

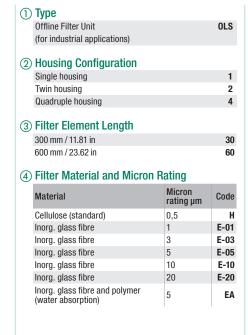
www.stauff.com/9/en/#186

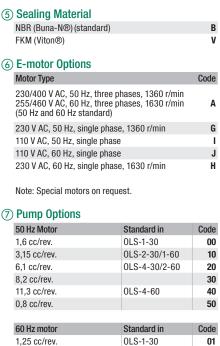
Dimensions OLS-4-60-H-B

Offline Filters • Type OLS

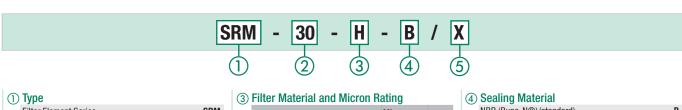
Technical Data


All dimensions in $\operatorname{mm}/\operatorname{in}$


	OLS-1-60-H-B	OLS-2-60-H-B	OLS-4-60-H-B			
Number of Filter Housings	1	2	4			
Nominal Flow	4,2 I/min 1.1 US GPM	8,4 l/min 2.22 US GPM	17 I/min 4.5 US GPM			
Max. Differential Pressure	6,2 bar 90 PSI					
Max. Fluid Temperature	+80 °C +176 °F					
Max. Housing Pressure	20 bar 290 PSI					
Viscosity Range	20 160 cSt 100 750 SUS					
Connection Suction Side	G1/2	G1/2	G3/4			
Connection Return Side	G1/2		G3/4			
Hose Diameter	1/2 in (inner diameter) flexible hose		3/4 in (inner diameter) flexible hose			
Weight (Including Element)	18 kg 39.7 lbs	30 kg 66.1 lbs	61 kg 134.5 lbs			
Max. System Volume	2700 l 713 gal	5400 I 1426 gal	10800 l 2853 gal			
Dimensions H x W x D	734 x 324 x 189 mm 28.66 x 13.19 x 7.48 in	720 x 340 x 312 mm 28.90 x 13.39 x 12.72 in	820 x 494 x 145 mm 32.28 x 19.44 x 5.70 in			
Connection for Online Particle Counter	STAUFF Test (M16 x 2)					
Pump	Gear pump					
Motor	See page 188 for electric motor details					
Connection Oil-Analysis: P1 filter inlet side P2 filter outlet side	Test connector (M16 x 2) Red Test connector (M16 x 2) Yellow					



Offline Filter Housings / Complete Filters - Type OLS



Filter Elements • Type SRM

2.5 cc/rev.

5,0 cc/rev.

6,3 cc/rev. 10 cc/rev. 0LS-2-30/1-60

0LS-4-30/2-60

0LS-4-60

11

21 31

41

1 Type
Filter Element Series SRM
2 Filter Element Length
300 mm / 11.81 in 30
600 mm / 23.62 in 60

Micron Material Code rating µm Cellulose (standard) 0,5 Н Inorg. glass fibre E-01 Inorg. glass fibre 3 E-03 Inorg. glass fibre 5 E-05 Inorg. glass fibre 10 E-10 Inorg. glass fibre 20 E-20 lnorg. glass fibre and polymer (water absorption) 5 EΑ NBR (Buna-N®) (standard)
FKM (Viton®)

S Design Code
Only for information

Technical Data on Electric Motors used for OLS Filters (For air driven motors contact STAUFF)

E-motor	Standard Configuration	Description	Power in kW	Power in HP	Voltage 50 Hz	Amp 50 Hz	RPM 50 Hz	Voltage 60 Hz	Amp 60 Hz	RPM 60 Hz
l, J	0LS-1-30 0LS-2-30 0LS-1-60	M63 B3/B5 4P 110V MULTIVOLT	0,18	0.24	110 V AC	3,30		110 V AC	2,70	
G, H	0LS-1-30 0LS-2-30 0LS-1-60	M63 B3/B5 4P 230 MULTIVOLT	0,18	0.24	230 V AC	1,57		230 V AC	1,34	
Α	0LS-1-30 0LS-2-30 0LS-1-60	M63 B3/B5 4P 3PH MULTIVOLT	0,18	0.24	230/400 V AC	1,03 / 0,60		254/440 V AC	0,90 / 0,52	
Α	0LS-2-60 0LS-4-30	M63 B3/B5 4P 3PH MULTIVOLT	0,29	0.39	230/400 V AC	1,65 / 0,95	1460	254/440 V AC	1,47 / 0,85	1740
l, J	0LS-2-60 0LS-4-30 0LS-4-60	M71 B3/B5 4P 110V MULTIVOLT	0,37	0.50	110 V AC	6,10		110 V AC	5,20	
G, H	0LS-2-60 0LS-4-30 0LS-4-60	M71 B3/B5 4P 230V MULTIVOLT	0,37	0.50	230 V AC	3,00		230 V AC	2,65	
Α	0LS-4-60	M71 B3/B5 4P 3PH MULTIVOLT	0,37	0.50	230/400 V AC	1,90 / 1,10		254/440 V AC	1,60 / 0,93	

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Product Description

STAUFF Systems Units are characterized by their extremely efficient filter elements which are rated to 5 micron. Specially designed for industrial hydraulic installations the STAUFF Offline Filters are available in single or double length configurations. The Offline Filter Units can easily be mounted to new and existing hydraulic installations. By means of an integrated motor/pump unit and an Offline Filter, the oil is pumped from the reservoir through the filter unit and after filtering the oil is then returned to the tank.

Economical

The hydraulic market accepts that 80 % of mechanical failures are caused by contamination in the system. The STAUFF Water Absorbing Offline Filters attack this contamination at source and in addition to solid particles, these filters are also capable of removing large quantities of water from the oil. This prevents the catalytic reaction of water and solid particle contamination, resulting in extended useable oil life.

The application of STAUFF Filters results in lower component failure rates, less down time and less system maintenance.

Water Absorbing

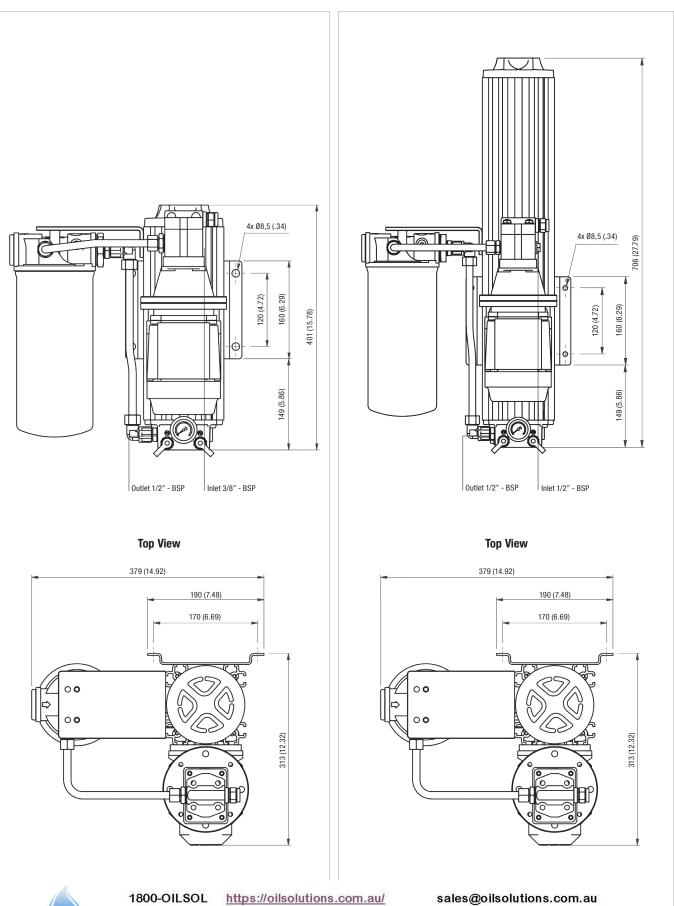
STAUFF Water Absorbing Filters are Offline Units that use special water absorbing Spin-On Filter Elements as a pre-filter. The fluid is pumped through the pre-filter which removes most water and larger solid contamination, in the second stage the fluid passes through the STAUFF Micro Filter where final water removal takes place as well as solid removal down to 0.5 micron.

In recent years STAUFF Systems have developed a great deal of experience in cleaning and drying hydraulic and lubrication systems in the following markets:

- Steel industry
- Maritime industry
- Petrochemical industry
- Paper industry

Advantages

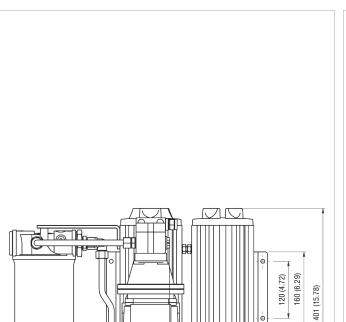
- \blacksquare Extremely clean oil due to the high filtration efficiency $\beta_{_{0,5}}\!\ge200,\,\beta_{_2}\!\ge2330$
- Prevention of channel forming by radial filtration direction
- Increased flow capacity
- Increased dirt-hold capacity
- Large water holding capacity
- Compact and easy-maintenance design
- Longer usage life for oil and components



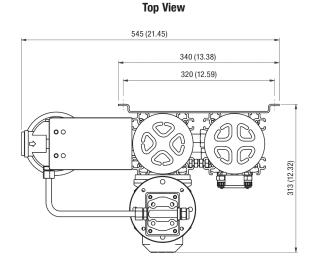
1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Dimensions OLSW-1-30

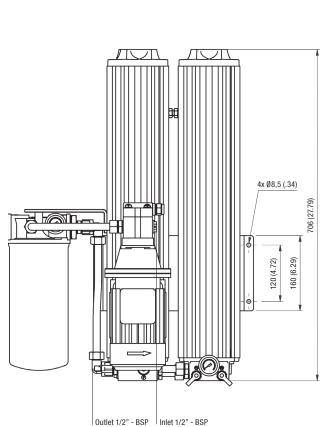
Dimensions OLSW-1-60


All dimensions in $\mbox{mm\,/\,in}$

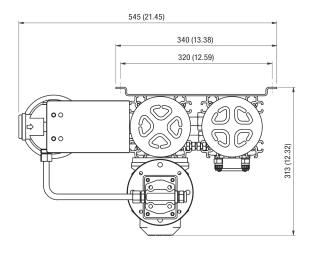
1800-645765



Dimensions OLSW-2-30

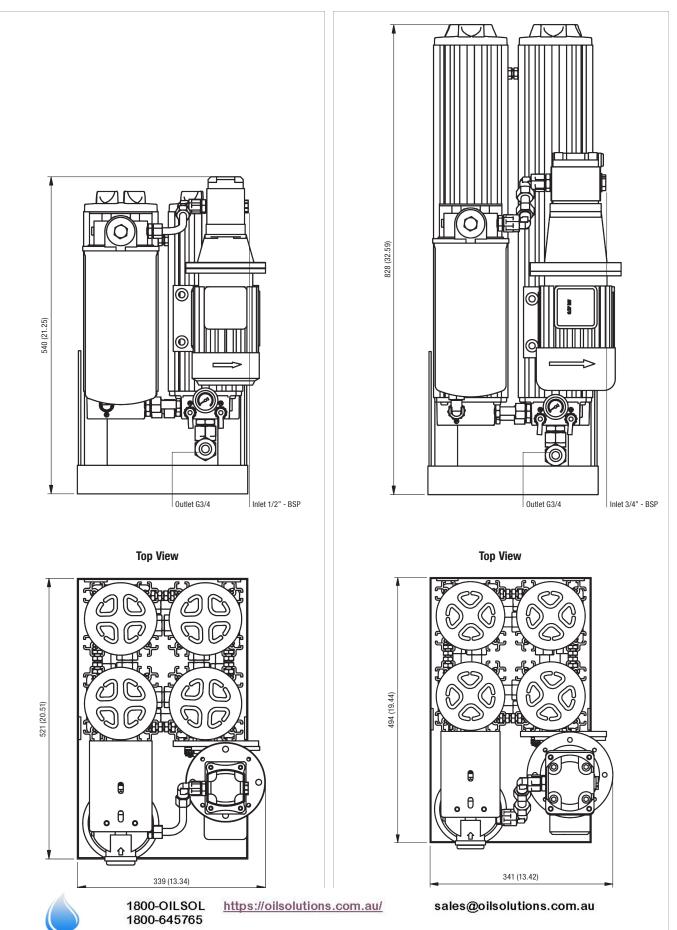


Outlet 1/2" - BSP


Inlet 1/2" - BSP

Dimensions OLSW-2-60

Top View


1800-OILSOL 1800-645765 https://oilsolutions.com.au/

sales@oilsolutions.com.au

All dimensions in mm / in

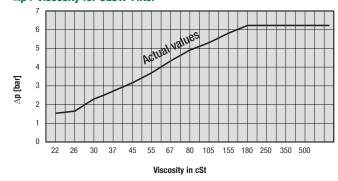
Dimensions OLSW-4-30

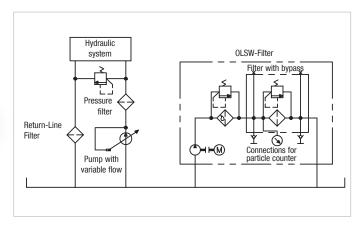
Dimensions OLSW-4-60

All dimensions in $\mbox{mm\,/\,in}$

OIL SOLUTIONS

Technical Data OLSW

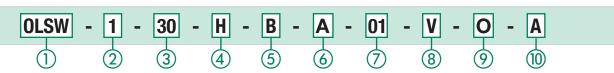

	0LSW-1-30-H-B	OLSW-1-60-H-B	OLSW-2-30-H-B	OLSW-2-60-H-B	OLSW-4-30-H-B	OLSW-4-60-H-B				
Number of Filter Housings	1	1	2	2	4	4				
Nominal Flow	2,1 I/min	4,2 l/min	4,2 l/min	8,4 I/min	8,4 I/min	16,8 l/min				
	.6 US GPM	1.1 US GPM	1.1 US GPM	2.2 US GPM	2.2 US GPM	4.4 US GPM				
Max. Differential Pressure	6,2 bar over the filter elen									
Max. Differential Freedom	90 PSI over the filter elem	90 PSI over the filter element without backpressure								
Water Absorbing Canacity	794 ml	1144 ml	1144 ml	1844 ml	1844 ml	3244 ml				
Water Absorbing Capacity	25 oz.	38 oz.	38 oz.	62 oz.	62 oz.	109 oz.				
Max. Fluid Temperature	+80 °C									
wax. Fiulu lemperature +176 °F										
20 bar										
Max. Housing Pressure 290 PSI										
20 160 cSt										
Viscosity Range 100 750 SUS										
Connection Suction Side	G3/8	G1/2	G1/2	G1/2	G1/2	G3/4				
Connection Return Side	G1/2	G1/2	G1/2	G1/2	G3/4	G3/4				
Hose Diameter	1/2 in (inner diameter) flex	ible hose				3/4 in (inner diameter) flexible hose				
Weight (including Element)	18 kg	22 kg	25 kg	34 kg	43 kg	65 kg				
weight (including Element)	39.7 lbs	48.5 lbs	55. 1 lbs	75.0 lbs	94.8 lbs	143.3 lbs				
Mary Creaters Values	1350	2700 I	2700 I	5400 I	5400 I	10800 I				
Max. System Volume	356 gal	713 gal	713 gal	1427 gal	1427 gal	2853 gal				
Dimensions	401 x 379 x 313 mm	706 x 379 x 313 mm	401 x 545 x 313 mm	706 x 545 x 313 mm	540 x 339 x 521 mm	928 x 341 x 494 mm				
HxBxL	15.78 x 14.92 x 12.32 in	27.79 x 14.92 x 12.32 in	15.78 x 21.45 x 12.32 in	27.79 x 21.45 x 12.32 in	21.25 x 13.34 x 20.51 in	36.53 x 13.42 x 19.44 in				
Pump	Gear pump									
Connection Oil-Analysis: P1 filter inlet side P2 filter outlet side	Test connector (M16 x 2) F Test connector (M16 x 2) Y									

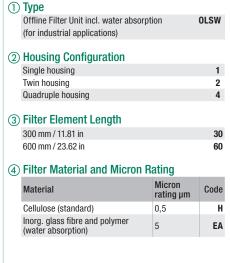


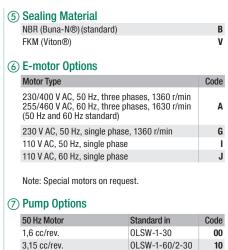
Water absorbing spin-on filter element

$\Delta \textbf{p}$ / Viscosity for OLSW-Filter

System Example Schematic Offline Filtration incl. Water Absorption






1800-OILSOL 1800-645765 https://oilsolutions.com.au/

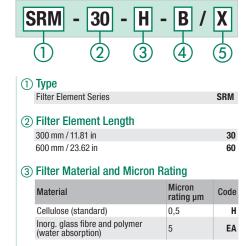
Water Absorbing Offline Filter Housings / Complete Filters • Type OLSW

6,1 cc/rev.

11,3 cc/rev.

60 Hz Motor

1,25 cc/rev.


2,5 cc/rev.

5.0 cc/rev.

10 cc/rev.

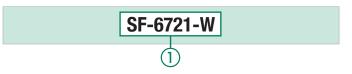
® Clogging Indicator	
Visual clogging indicator	١
O Maria Para O all'anna	
Mounting Options	
No options (standard)	(
10) Pre-Filter Elements	
Water absorption element	
SF-6721-W (10 micron water absorbing, capacity 444 ml water)	ļ
Pre-filter elements (particles)	
without pre-filter element	(
SF-6702-MG (inorganic glass fiber, 1 micron)	Е
SF-6704-MG (inorganic glass fibre, 3 micron)	(
SF-6707-MG (inorganic glass fibre, 6 micron)	0
SF-6731-MG (inorganic glass fibre, 12 micron)	E
SF-6726-MG (inorganic glass fibre, 25 micron)	F
SF-6721 (filter paper, 10 micron)	0
SF-6711 (filter paper, 25 micron)	H
SF-6791 (wire mesh, 125 micron)	

Filter Elements • Type SRM

Pre-Filter Elements • Type SF-67

20

40


Code

01

11

21

41

Pre-Filter Elements Water absorption elements

0LSW-2-60/4-30

0LSW-1-60/2-30

0LSW-2-60/4-30

0LSW-4-60

Standard in

0LSW-1-30

0LSW-4-60

Water absorption element	
SF-6721-W (10 micron water absorbing, capacity 444 ml water)	
Pre-filter elements (particles)	
without pre-filter element	
SF-6702-MG (inorganic glass fiber, 1 micron)	
SF-6704-MG (inorganic glass fibre, 3 micron)	
SF-6707-MG (inorganic glass fibre, 6 micron)	
SF-6731-MG (inorganic glass fibre, 12 micron)	
SF-6726-MG (inorganic glass fibre, 25 micron)	
SF-6721 (filter paper, 10 micron)	
SF-6711 (filter paper, 25 micron)	
SF-6791 (wire mesh, 125 micron)	

(4) Sealing Material NBR (Buna-N®) (standard)

FKM (Viton®)

(5) Design Code
Only for information

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

sales@oilsolutions.com.au

www.stauff.com/9/en/#194

Heated Offline Filters • Type OLSH

Product Description

STAUFF System Units are characterized by their pre-heating unit and extremely efficient filter elements with a fineness of 0,5 micron.

Specially designed for industrial hydraulic installations, the STAUFF Offline Filters are available in single or multiple housing configurations. The Offline Filter Units can easily be mounted to new and existing hydraulic installations.

By means of an integrated motor/pump unit and an Offline Filter, the oil is pumped from the reservoir through the filter unit and after filtering the oil is then returned to the tank.

Economical

The hydraulic market accepts that 70 % of the mechanical failures are caused by contamination in the system. The STAUFF Offline Filters attack this contamination at the source. In addition to solid particles, these filters are also capable of removing water from the oil. This prevents the catalytic reaction of water and solid particle contamination, resulting in extended usable of life.

The application of STAUFF Filters results in lower component failure rates, less down time and less system maintenance.

In recent years STAUFF Systems have developed a great deal of experience in cleaning and drying hydraulic and lubrication systems in the following markets:

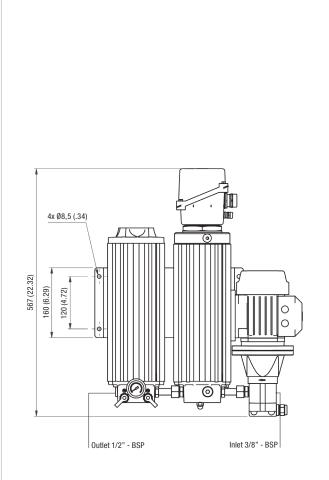
- Steel industry
- Maritime industry
- Petrochemical industry
- Paper industry

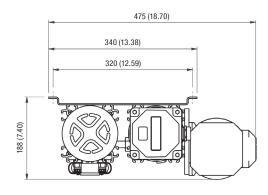
Heated Offline Filters

The electric pre-heating ensures that the cold and/or high viscosity fluid is brought to a temperature with a suitable filtration viscosity. Offline Filters with pre-heating can be applied to new or existing installations. The integrated pump-motor combination draws fluid from the reservoir, pumps it through a heating element, filters the fluid and returns it to the reservoir.

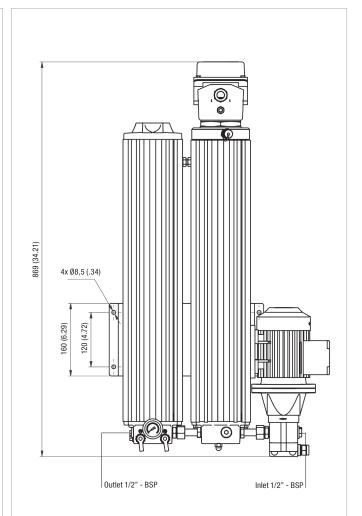
Advantages

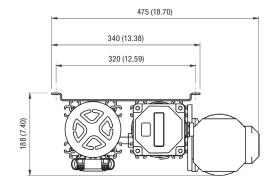
- \blacksquare Extremely clean oil due to the high filtration efficiency $\beta_{0.5} \geq 200,\,\beta_2 \geq 2330$
- Prevention of channel forming by radial filtration direction
- Increased flow capacity
- Increased dirt holding capacity
- Large water holding capacity
- Compact and easy maintenance design
- Longer usage life for oil and components




1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Heated Offline Filters • Type OLSH


Dimensions OLSH-1-30-H-B


Top View

Dimensions OLSH-1-60-H-B

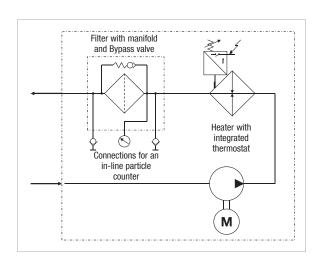
Top View

All dimensions in mm / in

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

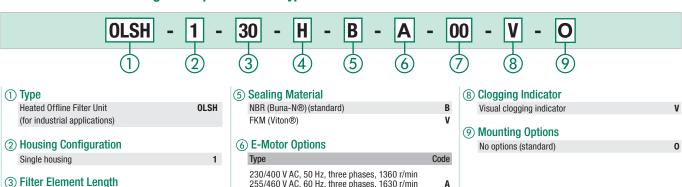
Heated Offline Filters - Type OLSH


Technical Data Heated Offline Filters

	OLSH-1-30-H-B	OLSH-1-60-H-B
Number of Filter Housings	1	1
Nominal Flow	2,1 I/min .6 US GPM	4,2 l/min 1.2 US GPM
Max. Differential Pressure	6,2 bar 90 PSI	
Max. Fluid Temperature	+80 °C +176 °F	
Max. Housing Pressure	20 bar 290 PSI	
Heater Capacity	2 kW	
Connection Suction Side	G3/8	G1/2
Connection Return Side	G1/2	G1/2
Hose Diameter	1/2 in (inner diameter) flexible hose	3/4 in (inner diameter) flexible hose
Weight (including Element)	24 kg 44 lbs	28 kg 62 lbs
Max. System Volume	1350 l 356 gal	2700 l 713 gal
Dimensions H x W x D	567 x 475 x 188 mm 22.32 x 18.70 x 7.40 in	869 x 475 x 188 mm 34.21 x 18.70 x 7.40 in
Connection for Online Particle Counter	STAUFF Test (M16 x 2)	STAUFF Test (M16 x 2)
Pump	Gear Pump	
Motor	See page 196 for electric motor details	
Connection Oil-Analysis: P1 filter inlet side P2 filter outlet side	Test connector (M16 x 2) Red Test connector (M16 x 2) Yellow	

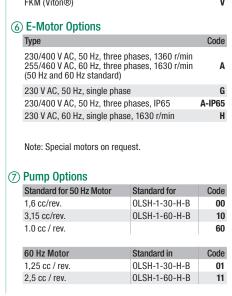
STAUFF Heating Efficiency Curve

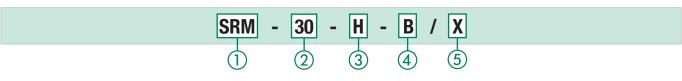
Heated Unit Hydraulic Schematic



1800-OILSOL 1800-645765 https://oilsolutions.com.au/

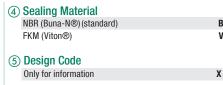
Heated Offline Filter Housings / Complete Filters • Type OLSH


30


600 mm / 23.62 in

300 mm / 11.81 in

$\begin{array}{ccc} \text{Material} & & \text{Micron} \\ \text{Rating } \mu m & \text{Code} \\ \text{Cellulose (standard)} & & 0,5 & & \textbf{I} \end{array}$	4
Cellulose (standard) 0,5	
Inorg. glass fibre 1 E-0	
Inorg. glass fibre 3 E-0 3	
Inorg. glass fibre 5 E-0 5	
Inorg. glass fibre 10 E-1 0	
Inorg. glass fibre 20 E-2 0	
Inorg. glass fibre and polymer (water absorption) 5	



① Type	
Filter Element Series	SRM
② Filter Element Length	
300 mm / 11.81 in	30
600 mm / 23.62 in	60

3	③ Filter Material and Micron Rating						
	Material	Micron rating µm	Code				
	Cellulose (standard)	0,5	Н				
	Inorg. glass fibre	1	E-01				
	Inorg. glass fibre	3	E-03				
	Inorg. glass fibre	5	E-05				
	Inorg. glass fibre	10	E-10				
	Inorg. glass fibre	20	E-20				
	Inorg. glass fibre and polymer (water absorption)	5	EA				

1800-OILSOL

https://oilsolutions.com.au/

Bypass Filters • Type BPS

Description

STAUFF BPS Bypass Filter can be used for OEM first fit applications as well as for retro-fitting. The filtration is done in a bypass configuration from the main hydraulic system.

The STAUFF BPS Filter Systems are available with one filter housing (BPS-1A, maximum flow 2,1 l/min / .6 US GPM) or with two filter housings (BPS-2A, maximum flow 4,2 l/min / 1.1 US GPM) at a viscosity between 20 \dots 160 cSt. The STAUFF Bypass Filter Units are especially designed for mobile applications in hydraulic and/or transmission systems.

In the absence of a pumped system, the oil is drawn from the main system by means of a specially designed and integrated flow valve. The amount of oil extracted at any time is insignificant therefore ensuring that it will not affect the working of the main system. Most commonly used biodegradable oils in the mobile sector are suitable for filtration with STAUFF Filter Elements.

STAUFF Systems have been applied on a wide range of mobile hydraulic machinery, cleaning fluids to levels not previously possible with conventional filtration methods, resulting in dramatic increases in component life.

Material

· Housing: Anodized Aluminium

Differential Pressure

Max. 6,2 bar / 90 PSI

Temperature Range

■ Max. +80 °C / +176 °F media temperature

Media Compatibility

• Mineral and lubrication oils, others on request

Options and Accessories (only for BPS)

Clogging Indicators

Visual clogging indicators

Valves

· Available with flow control valve

Type BPS

- Bypass filter units are especially designed for mobile applications in hydraulic and/or transmission systems
- No special motor-pump unit is required

max. 20 bar / 290 PSI Housing pressure: Nominal flow rate: max. 4,2 I/min / 1.1 US GPM

System volume: Connections:

Pressure range:

max. 1350 I / 356 gal G1/4, G1/2 12 ... 420 bar / 180 ... 6200 PSI

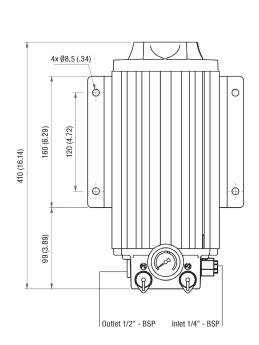
Type BPS

- · Bypass filter units are especially designed for mobile applications in hydraulic and/or transmission systems
- No special motor-pump unit is required

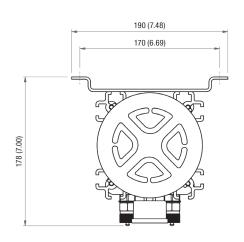
max. 20 bar / 290 PSI Housing pressure: Nominal flow rate: max. 4,2 I/min / 1.1 US GPM System volume: max. 2700 I / 713 gal

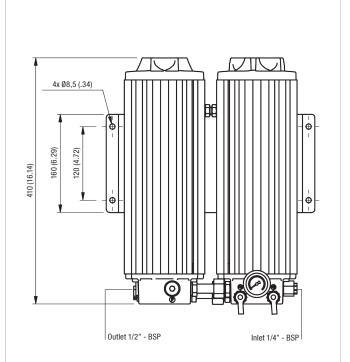
G1/4, G1/2 Connections:

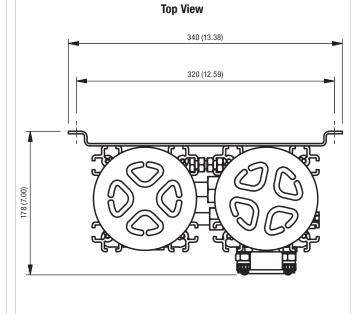
12 ... 420 bar / 180 ... 6200 PSI Pressure range:


1800-OILSOL 1800-645765

https://oilsolutions.com.au/


Bypass Filters • Type BPS

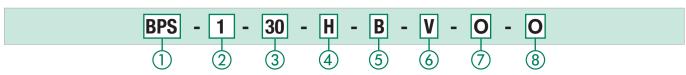

Dimensions BPS-1-30-H-B

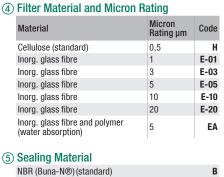

Dimensions BPS-2-30-H-B

Top View

All dimensions in mm / in

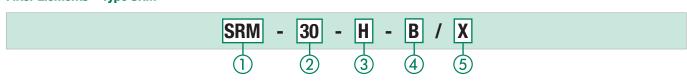
1800-OILSOL 1800-645765

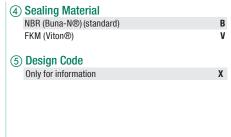

https://oilsolutions.com.au/


Technical Data BPS Bypass Filters • Type BPS


	BPS-1-30-H-B	BPS-2-30-H-В				
Number of Filter Housings	1	2				
Naminal Flam Data	2,1 l/min	4,2 l/min				
Nominal Flow Rate	.6 US GPM	1.1 US GPM				
Max. Differential Pressure	6,2 bar over the filter element without back pressure					
wax. Differential Pressure	90 PSI over the filter element without back pressure					
Max. Fluid Temperature	+80 °C	·				
wax. Fluid lemperature	+176 °F					
Max. Housing Pressure	20 bar					
wax. Housing I ressure	290 PSI					
Viscosity Range	20 160 cSt					
Viscosity Harige	100 750 SUS					
Connection Pressure Side	G1/4					
Connection Return Side	G1/2					
Hose Diameter	3/8 1/2 in (inner diameter) flexible hose					
Weight (including Element)	6 kg	13 kg				
Weight (including Liement)	13.2 lbs	28.7 lbs				
Max. System Volume	750 I	1500				
Max. System volume	200 gal	400 gal				
Dimensions	410 x 190 x 178 mm	410 x 340 x 178 mm				
HxWxD	16.14 x 7.48 x 7.00 in	16.14 x 13.38 x 7.00 in				
Connection for On-Line Particle Counter	STAUFF Test (M16 x 2)					
Pressure Range	12 420 bar					
Pressure Range	180 6200 PSI					
Connection Oil-Analysis:						
P1 filter inlet side	Test connector (M16 x 2) Red					
P2 filter outlet side	Test connector (M16 x 2) Yellow					

Bypass Filter Housings / Complete Filters • Type BPS





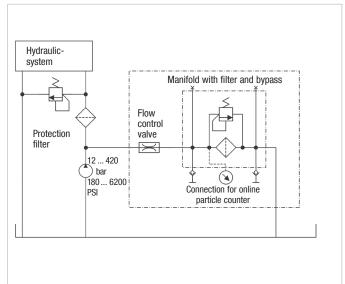
Filter Elements • Type SRM

3	Filter Material and Micron Ra	and Micron Rating	
	Material	Micron Rating µm	Code
	Cellulose (standard)	0,5	Н
	Inorg. glass fibre	1	E-01
	Inorg. glass fibre	3	E-03
	Inorg. glass fibre	5	E-05
	Inorg. glass fibre	10	E-10
	Inorg. glass fibre	20	E-20
	Inorg. glass fibre and polymer (water absorption)	5	EA

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

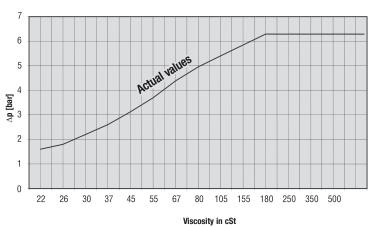
sales@oilsolutions.com.au

FKM (Viton®)

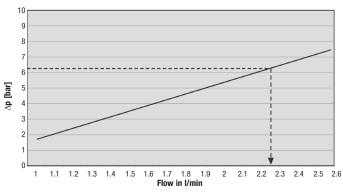


Bypass and Offline Filters • Type OLS / BPS

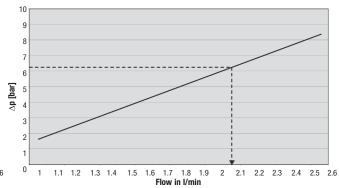
Offline Filter OLS Hydraulic Symbol


Hydraulic-system Manifold with filter and bypass Protection filter Pump with variable flow Manifold with filter and bypass Connection for online particle counter

Bypass Filter BPS Hydraulic Symbol



Filter Element SRM-30-HB Δp / viscosity - graph


(at a flow of 2,1 l/min / .6 US GPM per element)

Flow Characteristics Offline Filter OLS with Filter Element SRM-30-H-B (at maximum viscosity)

Flow Characteristics Bypass Filter BPS with Filter Element SRM-30-H-B (at maximum viscosity)

DIL SOLUTIONS

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Mini Water Vac - Type SMWV

Product Description

The Mini Water Vac is a designated oil purification unit which can be applied directly to various types of machine reservoirs. It dehydrates and cleans most types of oils such as lubricating, hydraulic, transformer, and switch oils. The Mini Water Vac is a self-regulating filtration unit which removes particles, gas, and water. The purified oil satisfies the most stringent quality requirements.

The Mini Water Vac neither removes or alters oil additives. The water removal process is based on pure vacuum evaporation inside a vacuum chamber at a maximum temperature of +65 °C / +149 °F. Solid particle removal is achieved through a well proven STAUFF Systems Micro Filter.

Simple Operation

The Mini Water Vac does not require continuous supervision while operating. Once the unit is connected and commissioned, oil purification is a semi-automatic process. Desired oil temperature can be selected via the integrated heater thermostat. The dehydration and filtering process is fully automatic and is controlled via the PLC. The only manual action required is the emptying the pre-condenser bowl and the waste water container which are equipped with float switches to prevent overflow.

Water, Gas and Particle Removal

The Mini Water Vac removes liquid, gas, and solid particle contamination, which are corrosive and contribute to the reduction of machine life. Contamination greatly increases maintenance costs and contribute to breakdowns and total machine failures. The Mini Water Vac offers protection against malfunctions, breakdowns or total failures. The Mini Water Vac also protects the environment by reducing oil consumption and oil disposal.

Benefits

- · Efficient water, gas and particle removal
- Extension of fluid life
- · Reduces fluid disposal
- Minimizes corrosion
- Reduced failures and downtime
- · Reduce operating costs

Technical Data

Construction

■ SMWV-1-30: Mini Water Vac Vacuum Dehydration Unit one filter housing

Materials

Eloxated Aluminium Filter housing Vacuum chamber **Eloxated Aluminium** Heater chamber Eloxated Aluminium

Port Connections

Inlet G1 Outlet G1/2

• Online particle counter STAUFF Test (M16x2)

Max. System Volume

■ 3000 I / 795 gal

Recirculating Flow Rate

90 l/h / 23.8 gal/hr

Max. Backpressure

■ 1 bar / 14.5 PSI

Max. Heater Temperature

- +65°C/+149°F

Filter Element

1 micron inorganic glass fibre element β₁ > 200

Media Compatibility

- Viscosity between 20 ... 500 cSt
- Max. attainable water content 100 ppm

- 100% of free water, >80% of dissolved water
- 100% of free gases, >80% of dissolved gases

Dimensions

■ 1200 x 740 x 450 mm / 47.3 x 29.1 x 17.7 in

Weight

■ 130 kg / 287 lbs

Electrical Data

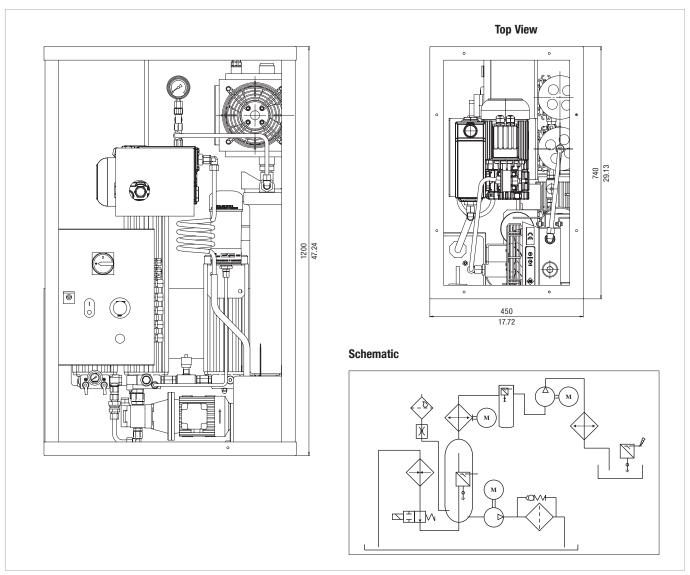
Voltage 230/400 V AC, 50 Hz 255/460 V AC, 50 Hz

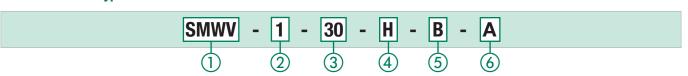
Power supply 3 phases Heater section 2 kW

0,037 kW vacuum pump Vacuum section

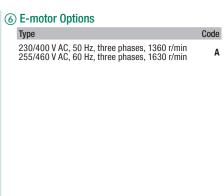
Max. current 3 Amps

Process Control

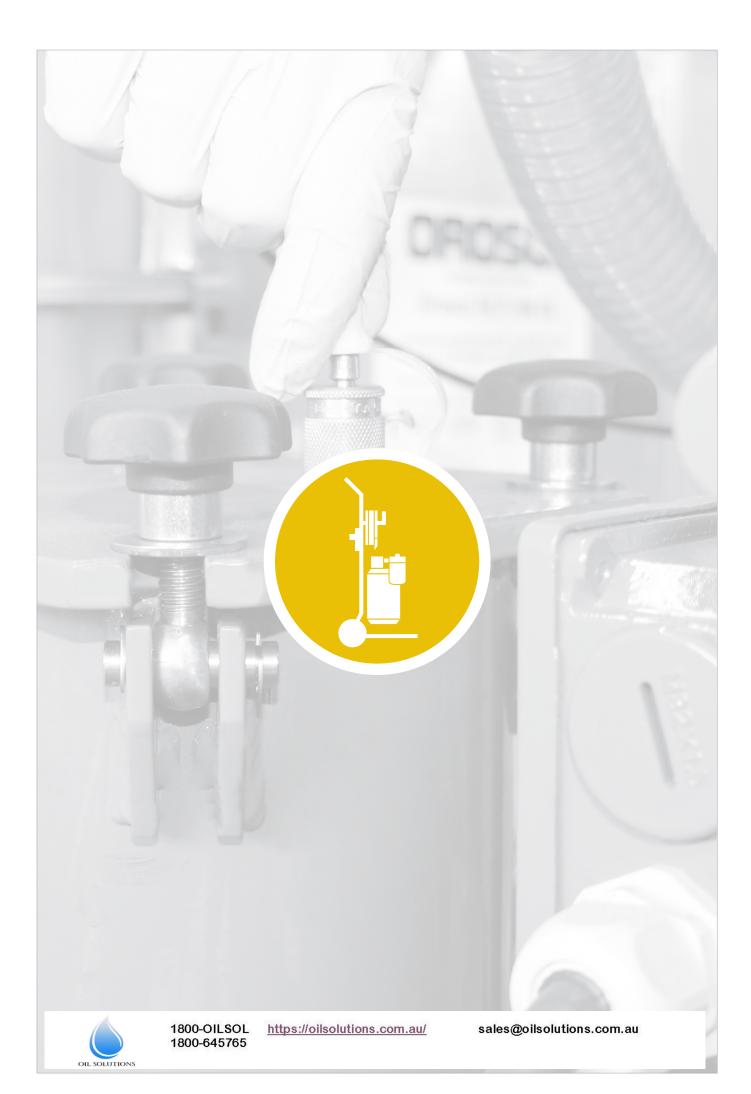

PLC unit


Mini Water Vac - Type SMWV

Dimensions SMWV-1


All dimensions in mm / in

Mini Water Vac • Type SMWV



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Filtration Systems	208 - 209
STAUFF Europe Filter Systems	208
STAUFF America Filter Systems	209
STAUFF Australia Filter Systems	209

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

ESTAUFF ®

STAUFF Europe

Product Description

STAUFF Mobile Filtration Systems type SMFS are designed to cover a wide application range in the area of offline-filtration.

Being compact, powerful and robust the units assist the preventive maintenance, either when transferring fresh oils or purifying existing hydraulic and lubrication oil systems.

By selecting high-quality components, the SMFS is suitable for purifying small and medium size systems in a very short time or for a permanent offline-filtration on large hydraulic systems.

- High nominal flow rates of 15 l/min / 4 US GPM respectively 110 l/min / 30 US GPM by using high-quality gear pumps and energy-efficient, high-performance three phase motors suitable for continuous duty cycle
- Flexible use (mobile or stationary offline-filtration, filter elements available in different micro ratings)
- All Units are equipped with a 200 μm pre filter
- Drip pan for residual oil
- · Easy and safe handling
- Rugged construction
- Filter elements with 4Pro media provide high dirt holding capacity and filtration performance
- Made in Germany

Type SMFS-P-015

- Portable hand-held unit
- · Compact and light-weight design
- Very flexibilty
- High-quality gear pump
- Nominal flow rate: max. 15 I/min / 4 US GPM
- Motor versions: 230 V 50 Hz or 400 V 50 Hz
- \blacksquare Micron rating available from 3 ... 125 μm
- Also available with a blank filter element for the reason of used oil to be removed from the hydraulic reservoir
- Weight: approx. 33 kg / 73 lbs

Type SMFS-U-060

- Mobile Filtration system
- · High nominal flow rates
- · Long-term operating times
- High-quality gear pump
- Nominal flow rate: max. 60 l/min / 15 US GPM
- Motor unit 400 V 50 Hz
- Micron rating available from 3 ... 125 μm
- Weight: approx. 165 kg / 364 lbs

Type SMFS-U-030

- Mobile Filtration system
- · Robust steel frame push cart
- Maximum flexibility
- High-quality gear pump
- Nominal flow rate: max. 30 I/min / 8 US GPM
- Motor versions: 230 V 50 Hz or 400 V 50 Hz
- \blacksquare Micron rating available from 3 ... 125 μm
- Water absorbing element SF-6721-W
- Also available with a blank filter element for the reason of used oil to be removed from the hydraulic reservoir
- Weight: approx. 58,5 kg / 129 lbs

Type SMFS-U-110

- Mobile Filtration system
- · High nominal flow rates
- Long-term operating times
- High-quality gear pump
- Nominal flow rate: max. 110 I/min / 30 US GPM
- Motor unit 400 V 50 Hz
- Micron rating available from 3 ... 125 μm
- Weight: approx. 177,2 kg / 391 lbs

Type SMFS-U-DL-015-G

- Extremely robust transport cart
- Heavy-duty rollers, steerable and with locking device on the rear end
- Convenient filling nozzle
- High-quality gear pump
- for 200 I / 52 US GAL oil drums
- Nominal flow rate: max. 15 I/min / 4 US GPM
- Motor versions: 230 V 50 Hz
- Spin-On filter Element of the series SFC-57/58 including visual clogging indicator
- Micron rating available from 3 ... 125 μm
- Water absorbing element SF-6721-W
- Weight: approx. 85 kg / 187 lbs (without oil drum)

Type SMFS-U-CM-110

- Mobile Filtration system
- High nominal flow rates
- Long-term operating times
- High-quality gear pump
- Integrated 8-chanel particle counter
- Nominal flow rate: max. 110 l/min / 30 US GPM
- Motor unit 400 V 50 Hz
- Micron rating available from 3 ... 125 μm
- Weight: approx. 220 kg / 485 lbs

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

STAUFF America

Product Description

The Stauff portable filter carts, (SCFC & SPFC models), are very complete and efficient units capable of off line filtration, filling or emptying reservoirs or any application requiring the transfer or filtration of hydraulic fluid. Multi stage filtration can be achieved to extend element life. Both units are available with a variety of different spin on elements for quick and easy change to match the application requirements.

The SCFC is a very lightweight and compact cart perfect for most maintenance departments. The cart is assembled with either a single or double head allowing for flexibility.

The SPFC comes standard with a suction element, (125 µm), and two double heads which maximizes the carts filtration capabilities. It is also available as a Condition and Monitoring cart which incorporates Stauff's LPM-II Particle monitor for accurate monitoring of the fluids cleanliness condition.

Type SCFC-05 / 10

- Flow capability of 19 I/min / 5 GPM or 38 I/min / 10 GPM
- Single or three phase electric motor-1HP
- Thermal overload relays
- Welded frame cart
- Filter head with by-pass valve
- Visual clogging indicator
- On/Off butons
- Weight: 52 kg / 115 lbs

Type SPFC-10

- Flow capability of 38 I/min / 10 GPM
- On/Off buttons with 10 foot power cord
- Single or three phase motor-1HP
- Heavy duty welded frame with drip pan and tool tray
- 3-way ball valve to by pass filters
- 3/6/12/25 μm and water absorption filter elements available
- Available as a drum cart
- Optional Condition and monitoring configuration
- Weight: 86 kg / 190 lbs

STAUFF Australia and New Zealand

Product Description

STAUFF Mobile Filtration Systems type SPFC is designed to cover a wide application range in the area of offline-filtration. This is an essential tool for preventive maintenance, either when transferring new oils or purifying existing hydraulic and lubrication oil systems.

The Stauff Portable Filter Cart type SPFC is a very complete and practical unit utilising dual stage filtration 1. pre-filtration through magnetic core 2. final filtration through a 10 micron micro-glass element.

This system is designed for the transfer, draining or filling of reservoirs, or filtration of mineral oil based fluids for hydraulic systems & gear boxes limited to a viscosity range of 10-150 mm^2/sec (cSt).

The application of the SPFC offers excellent mobility for maintenance, resulting in clean oil changes, increasing the lifetime of components and a higher availability of machinery.

- Suction/Delivery Hoses: 3/4" ID x 3 m / 9.84 ft (Suction hose fitted with drum lance H: 900mm / 35.43 in)
- Heavy duty frame with solid rubber wheels
- Operation & maintenance manual
- Lockable storage box
- Drip tray
- Hose storage hooks
- Oil resistant rubber handle grips

Type SPFC

Flow: 23 l/min / 6 US GPM - Nominal
 Voltage: 240 V / 50 Hz

Start/Stop station with 3 m / 9.84 ft cable
 Electric motor: 1450 RPM 0,55 KW

Pump: Gear type 23 LPM @ 1450 RPMFilter: Magnetic Core (integral pre-filter)

■ Element: 10 µm

Bypass valve opens @ 1,5 bar / 18.12 PSISeals/0-rings: Buna-N® Rubber

■ Clogging Indicator: Clean △P= 1,25 bar / 18.12 PSI

Weight: 53 kg / 117 lbs

■ Dimensions (H x W x D): 1300 x 620 x 500 mm / 51.18 x 24.40 x 19.68 in

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Product-Specific Abbreviations 212 - 213

Global Contact Directory 214 - 215

1800-OILSOL 1800-645765 https://oilsolutions.com.au/

Product-Specific Abbreviations

Abbreviation	Product Category	Product Description	Page
BPS	Offline and Bypass Filters	Bypass Filters	199
HI	Pressure Filters	Clogging Indicator for Pressure Filters	54
HIM	Pressure Filters	Clogging Indicator for SMPF Series	63
HVB	Pressure Filters	Bypass valve	53
HVM	Pressure Filters	Multi-function valve	53
HVN	Pressure Filters	Non-return valve	53
HV0	Pressure Filters	Non-bypass standard insert	53
HVR	Pressure Filters	Reverse flow valve	53
Limit-Switch	Return-Line Filters	Electrical Clogging Switch for RF Series	73
Limit-Switch	Return-Line Filters	Electrical Clogging Switch for RFA Series	81
Limit-Switch	Return-Line Filters	Electrical Clogging Switch for RFB Series	89
Limit-Switch	Return-Line Filters	Electrical Clogging Switch for RFS Series	99
Limit-Switch	Return-Line Filters	Electrical Clogging Switch for RTF Series	125
Limit-Switch	Spin-On Filters	Electrical Clogging Switch for Spin-On Filters	177
OLS	Offline and Bypass Filters	Offline Filters	183
OLSH	Offline and Bypass Filters	Heated Offline Filters	195
OLSW	Offline and Bypass Filters	Water Absorbing Offline Filters	189
RA	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	122
RE-014	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	72
RE-022	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	88
RE-030	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	80
RE-045	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	98
REA	Return-Line Filters	Air Filter Element for RFB Series	88
REL	Replacement Filter Elements	Filter Elements for In-Line Filters SRFL-SW Series	146
RF	Return-Line Filters	Return-Line Filters for Tank-Top Mounting	69
RFA	Return-Line Filters	Return-Line Filters for Tank-Top Mounting	77
RFB	Return-Line Filters	Return-Line Filters for Tank-Top Mounting	85
RFS	Return-Line Filters	Return-Line Filters for Tank-Top Mounting	93
RFS-D	Return-Line Filters	Return-Line Filters for Tank-Top Mounting	93
RTE-20	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	110
RTE-25	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	106
RTE-47	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	112
RTE-48		Filter Elements for Return-Line Filters	114/112
RTE-49	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils		112
	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	
RTE-58	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Return-Line Filters	118
RTEA	Return-Line Filters	Air Filter Element for RTF-20 Series	110
RTF-10/15/25	Return-Line Filters	Return-Line Filters for Tank-Top Mounting	103
RTF-20	Return-Line Filters	Return-Line Filters for Tank-Top Mounting	107
RTF-40	Return-Line Filters	Return-Line Filters for Tank-Top Mounting	111
RTF-50	Return-Line Filters	Return-Line Filters for Tank-Top Mounting	115
RTF-N	Return-Line Filters	Return-Line Filters for In-Tank Mounting	119
SAF-05 / 06 / 07 / 11	·	Spin-On Filter Heads	153
SAF-10 / 13	Spin-On Filters	Spin-On Filter Heads	154
SBK	Replacement Filter Elements for Single, Double and Automatic Filters	Star-Pleated Elements, Basket and Ring Sieves	32
SBM	Replacement Filter Elements for Single, Double and Automatic Filters	Multimantle Elements	33
SBS	Replacement Filter Elements for Single, Double and Automatic Filters	Star-Pleated Elements, Basket and Ring Sieves	32
SBS-124	Replacement Filter Elements for Single, Double and Automatic Filters	Paper, Fibreglass and Polyester Elements	33
SCFC	Filtration Systems	Filtration Systems STAUFF America	209
SE	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for High Pressure Filters	40/44/48/52
SF	Pressure Filters	High Pressure Filters (Inline)	37
SF-63	Spin-On Filters	Spin-On Filter Elements	171
SF-65	Spin-On Filters	Spin-On Filter Elements	172
SF-67	Spin-On Filters	Spin-On Filter Elements	173
SFA	Pressure Filters	Medium Pressure Filters (Inline)	49
SFC-35 / 36	Spin-On Filters	Spin-On Filter Elements	169
SFC-57 / 58	Spin-On Filters	Spin-On Filter Elements	170
SFCT-35 / 36	Spin-On Filters	Spin-On Filter Elements	169
SFCT-57 / 58	Spin-On Filters	Spin-On Filter Elements	170
SFK	Replacement Filter Elements for Single, Double and Automatic Filters	Screw-In and Plug-In Elements	32
SFK-320	Replacement Filter Elements for Single, Double and Automatic Filters	Plastic Elements	33
SFK-439	Replacement Filter Elements for Single, Double and Automatic Filters	Heavy Fuel Elements	32
SFK-445	Replacement Filter Elements for Single, Double and Automatic Filters	Plastic Elements	33
SF-TM	Pressure Filters	High Pressure Filters (Top-mounted)	41
	Pressure Filters	High Pressure Filters (Sandwich)	45

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Catalogue 9 • Edition 04/2020

Product-Specific Abbreviations

Abbreviation	Product Category	Product Description	Page
SLF-02 / 03 / 04	Spin-On Filters	Spin-On Filter Head	152
SME	Replacement Filter Elements for Applications involving Hydraulic and Lubrication Oils	Filter Elements for Medium Pressure Filters	62
SMFS	Filtration Systems	Filtration Systems STAUFF Europe	208
SMPF	Pressure Filters	Medium Pressure Filters (Inline)	59
SMWV	Offline and Bypass Filters	Mini Water Vac	204
SPFC	Filtration Systems	Filtration Systems STAUFF Australia and New Zealand	209
SPFC-10	Filtration Systems	Filtration Systems STAUFF America	209
SPG-C	Return-Line Filters	Visual Clogging Indicator for RF Series	73
SPG-C	Return-Line Filters	Visual Clogging Indicator for RFA Series	81
SPG-C	Return-Line Filters	Visual Clogging Indicator for RFB Series	89
SPG-C	Return-Line Filters	Visual Clogging Indicator for RFS Series	99
SPG-C	Return-Line Filters	Visual Clogging Indicator for RTF Series	125
SPG-C	Spin-On Filters	Visual Clogging Indicator for Spin-On Filters	177
SRFL-D	In-Line Filters	In-Line Filters - Duplex Housing	129
SRFL-S	In-Line Filters	In-Line Filters - Simplex Housing	129
SRFL-SW	In-Line Filters	In-Line Filters for Industrial Water	143
SRM	Replacement Filter Elements	Filter Elements for Offline and Bypass Filters	181/188/ 194/198/ 201
SSF-100 / 120 / 120L / 130 / 160	Spin-On Fitters	Spin-On Filter Heads	157
SSF-12	Spin-On Filters	Spin-On Filter Head	155
SSF-150 / 180	Spin-On Filters	Spin-On Filter Heads	158
SSF-20L	Spin-On Filters	Spin-On Filter Head	156
SSF-24B	Spin-On Filters	Double Spin-On Filter Head	159
SSF-24N / 24S	Spin-On Filters	Double Spin-On Filter Heads	160
SSF-25	Spin-On Filters	Double Spin-On Filter Head	163
SSF-25B	Spin-On Filters	Double Spin-On Filter Head	161
SSF-25FM	Spin-On Filters	Double Spin-On Filter Head	162
SSFT-12	Spin-On Filters	Tank Top Spin-On Filter Head	165
SSFT-12B	Spin-On Filters	Tank Top Spin-On Filter Head	164
SSFT-20	Spin-On Filters	Tank Top Spin-On Filter Head	167
SSFT-20B	Spin-On Filters	Tank Top Spin-On Filter Head	166
WR-40	Return-Line Filters	Weld Ring for RTF-40 Series	113

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Global Contact Directory

STAUFF products and services are globally available through wholly-owned subsidiaries and a tight network of authorised distributors and representatives in all major industrial regions of the world.

Contact information on this page may be subject to changes and additions over time. Frequently updated and complete contact information can always be found at www.stauff.com.

Germany

Walter Stauffenberg GmbH & Co. KG Im Ehrenfeld 4

58791 Werdohl Tel.: +49 2392 91 60 Fax: +49 2392 91 61 03 F-Mail: sales@stauff.com www.stauff.com

Neuenrade-Küntrop Logistics Centre Wasserburgstraße 35 58809 Neuenrade

Plettenberg-Ohle Production Site Lennestraße 2 58840 Plettenberg

Meinerzhagen Production Site Neugrünenthal 58540 Meinerzhagen

Europe

France

STAUFF S.A.S.

230, Avenue du Grain d'Or Z.I. de Vineuil - Blois Sud 41354 Vineuil-cedex Tel.: +33 2 54 50 55 50 Fax: +33 2 54 42 29 19 E-Mail: direction@stauffsa.com www.stauff.fr

Russian Federation

STAUFF LLC

Building 1 19, Leninskaya Sloboda Moscow, 115280 Tel.: +7 495 276 16 50 Fax: +7 495 276 16 51 E-Mail: sales@stauff.ru www.stauff.ru

Further branch offices in Engels, Volzhskiy, Magnitogorsk, Nizhny Novgorod and St. Petersburg.

Ireland

STAUFF UK Ltd.

Block B, 9 Ferguson Drive Knockmore Hill Industrial Estate Lisburn, County Antrim, BT28 2EX Tel.: +44 2892 60 69 00 Fax: +44 2892 60 26 88 E-Mail: sales@stauffireland.com www.stauff.co.uk

500, Carlisle Street East Off Downgate Drive Sheffield, S4 8BS Tel.: +44 114 251 85 18 Fax: +44 114 251 85 19 E-Mail: sales@stauff.co.uk www.stauff.co.uk

Italy

STAUFF Italia s.r.l

Via Borima 21 (Frazione Borima) 23867 Suello (LC)

Tel.: +39 031 65 84 94 Fax: +39 031 65 50 05 F-Mail: sales@stauff it www.stauff.it

Poland

STAUFF Polska Sp. z o.o.

Miszewko 43 A 80-297 Banino

Tel.: +48 58 660 11 60 Fax: +48 58 629 79 52 E-Mail: sales@stauff.pl www.stauff.pl

United Kingdon

STAUFF UK Ltd.

STAUFF UK Ltd.

Badentoy Avenue Badentoy Industrial Estate Portlethen, Aberdeen, AB12 4YB Tel.: +44 1224 78 61 66 Fax: +44 1224 78 61 77 E-Mail: sales@stauffscotland.co.uk www.stauff.co.uk

STAUFF UK Ltd.

Unit 9, Southampton Trade Park Third Avenue, Millbrook Southampton, S015 0AD Tel: +44 2380 69 87 00 Fax: +44 2380 69 87 01 E-Mail: sales@stauffsouthampton.co.uk www.stauff.co.uk

North America

Canada

STAUFF Canada Ltd. 866 Milner Avenue

Scarborough Ontario M1B 5N7 Tel.: +1 416 282 46 08 Fax: +1 416 282 30 39 E-Mail: sales@stauffcanada.com www.stauffcanada.com

United States

STAUFF Corporation

7 Wm. Demarest Place Waldwick, 07463-1542 New Jersey Tel.: +1 201 444 78 00 Fax: +1 201 444 78 52 E-Mail: sales@stauffusa.com www.stauffusa.com

Further branch office in

South America

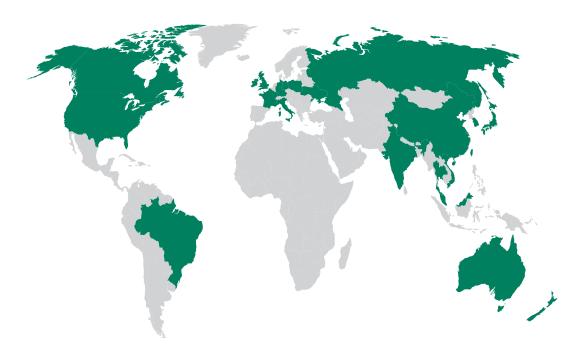
Brazil

STAUFF Brasil Ltda.

www.stauffbrasil.com

Avenida Gupê 10767 Galpão 2 - Bloco A Barueri, São Paulo, CEP 06422-120 Tel.: +55 11 47 72 72 00 Fax: +55 11 47 72 72 10 E-Mail: stauff@stauffbrasil.com

Canton, Michigan.



1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Global Contact Directory

Asia China

STAUFF CHINA

Building 1, No. 128, Die Qiao Road Jushuo Industrial Zone, Kang Qiao Shanghai, 201319 Tel.: +86 21 68 18 70 00 Fax: +86 21 68 18 71 36

E-Mail: info@stauff.com.cn www.stauff.com.cn

Malaysia

STAUFF South East Asia Sdn Bhd No. 8, Jalan SS13/6A

Subang Jaya Industrial Estate 47500 Subang Jaya Tel.: +60 3 5637 78 88 Fax: +60 3 5636 78 90 E-Mail: sales@stauff.com.my www.stauff.com.my

Further branch offices in Beijing, Changsha, Chengdu, Changchun, Chongqing, Jinan, Harbin, Guangzhou, Shenyang, Wuhan, Xian and Xuzhou.

Thailand

STAUFF (Thailand) Co., Ltd.

10 Soi On-Nut 74/4 **Pravet District** Bangkok 10250 Tel.: +66 2 721 73 23 / 24 Fax: +66 2 721 73 35 E-Mail: sales@stauff.co.th www.stauff.co.th

India

STAUFF India Pvt. Ltd.

Gat no. 26/1 & 27, Sanghar Warehousing Pune - Nagar Road Lonikand - 412216 Tel.: +91 20 6731 4900 Fax: +91 20 6731 4905 E-Mail: sales@stauffindia.com www.stauffindia.com

Vietnam

STAUFF Vietnam Ltd.

2nd Floor, CT-IN Building #435 Hoang Van Thu Street Tan Binh District, Ho Chi Minh City Tel.: +84 8 3948 10 41 / 42 Fax: +84 8 3948 10 44 E-Mail: sales@stauff.com.vn www.stauff.com.vn

Korea

STAUFF Korea Ltd.

105, Hwajeonsandan 5-ro Gangseo-gu Busan, 46739 Tel.: +82 51 266 6666 Fax: +82 51 266 8866 E-Mail: info@stauff.co.kr www.stauff.co.kr

Oceania Australia

STAUFF Corporation Pty Ltd

24-26 Doyle Avenue Unanderra NSW 2526

Tel.: +61 2 4271 9000 Fax: +61 2 4271 8432 F-Mail: sales@stauff.com.au www.stauff.com.au

Further branch offices in Adelaide, Brisbane, Melbourne and Sydney.

New Zealand

STAUFF Corporation (NZ) Ltd.

Unit D, 103 Harris Road East Tamaki, Auckland 2013

Tel.: +64 9 912 1530 Fax: +64 9 912 1531 F-Mail: sales @stauff co nz www.stauff.co.nz

1800-OILSOL 1800-645765

https://oilsolutions.com.au/

Catalogue 9 **STAUFF Filtration Technology**

Germany

Walter Stauffenberg GmbH & Co. KG
Im Ehrenfeld 4 wholly-owned subsidiaries and a tight network of authorised distributors and representatives in all major industrial regions of the world.

Fax: +49 2392 91 61 03
E-Mail: sales@stauff.com

You can find detailed contact information on the last two nages of this product extalogue or at

You can find detailed contact information on the last two pages of this product catalogue or at

www.stauff.com

1800-OILSOL 1800-645765

https://oilsolutions.com.au/